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I. INTRODUCTION 

Electromagnetic metasurfaces (EMMS) are composed of 

thin two-dimensional arrays of subwavelength-sized metallic 

unit cells that can manipulate the phase/magnitude response 

and polarization of electromagnetic waves at specific frequencies 

[1–4]. Owing to these capabilities, EMMS are used as spatial 

filters, polarizers, or microwave absorbers in broad applications 

that require the manipulation of electromagnetic waves or opti-

cal frequencies, such as communication systems, energy harvest-

ing, and cloaking [5–10]. These unique and extraordinary func-

tionalities are largely determined by the physical structures and 

material properties of the metasurfaces, which are judiciously 

selected or designed. More importantly, the potentially limitless 

pattern shapes of scatterers can significantly broaden the ap-

plicability of EMMS to extremely vast areas. In this context, the 

accurate geometric design of meta-atoms plays a crucial role in 

the successful construction of metasurfaces that implement tar-

geted electromagnetic (EM) properties. However, conventional 

design processes [11, 12] that map unknown design parameters 

to specific EM properties through numerous iterations of full-

wave simulations are painfully time consuming. Furthermore, 

the process relies heavily on a limited number of designers, with 

expertise in electromagnetism and intuitive insights derived 
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Abstract 
 

This study proposes an inverse design framework for metasurfaces based on a neural network capable of generating infinite and continuous 

latent representations to fully span the electromagnetic metasurfaces (EMMS) property space. The inverse design of EMMS inherently 

poses the one-to-many mapping problem, since one set of electromagnetic properties can be provided by many different shapes of scatter-

ers. Previous studies have addressed this issue by introducing machine learning-based generative models and regularization strategies. 

However, most of these approaches require highly complex operating configurations or external modules for preprocessing datasets. In 

contrast, this study aimed to construct a more streamlined and end-to-end solver by building a network to process multimodal datasets 

and then incorporating a classification scheme into the network. The validity of the idea was confirmed by comparing the accuracy of the 

results predicted by the proposed approach and the outcomes simulated using PSSFSS. 
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from extensive experience, who can efficiently narrow down the 

high-dimensional solution space. In this context, the inverse 

design technique, which attempts to directly predict equivalent 

metasurfaces for specific scattering properties, has been attract-

ing considerable attention from many interested researchers, the 

majority of whom have been encouraged by machine learning 

(ML)-based frameworks [13–23].  

To address the inverse problem, the literature introduced gen-

erative ML techniques, such as generative adversarial network 

(GAN) [24] or variational autoencoder (VAE) [25], that learn 

potential subspaces able to semantically explain training datasets. 

Previous studies have developed inverse models comprising mul-

tiple sub-networks, such as encoder, decoder, generator, simulator, 

or predictor. These sub-networks typically conduct regression 

from the input data domains to the target data domains and are 

implemented using either a convolutional neural network (CNN) 

or a multilayer perceptron (MLP) in alignment with a specific 

training strategy. In [26], a VAE consisting of an encoder and 

decoder was employed for representation learning in data do-

mains composed of scatterer shapes. It effectively expressed the 

original data with remarkably reduced latent codes. Notably, the 

learned latent space serves as a sample space that offers fictitious 

but plausible data that never existed in the training dataset. In 

this context, the dimension and distribution of latent variables, 

which pertain to the hyperparameters predefined by users, play a 

crucial role in capturing a small set of underlying information 

from input datasets in a low-dimensional space. Additionally, 

they contribute to the generation of new data by interpolating 

the feature spaces extracted from the training datasets. In con-

trast, while GAN attempts to estimate the probability distribu-

tion of target datasets in the same manner as VAE, it does not 

utilize an explicitly determined distribution for latent space. As a 

result, it does not involve a regularization scheme, such as the 

Kullback-Leibler (KL) divergence [27], for controlling the dis-

tribution of latent space (detailed in the following section). This 

neural network focuses on creating artificial but realistic data 

mimicking training datasets based on the logic devised for de-

ceiving a sub-network, called a discriminator, instead of trying to 

minimize the reconstruction error relative to the training datasets. 

Notably, since the release of the original GAN [28], various de-

rivatives have been actively developed to demonstrate the ability 

to faithfully generate stochastic variations of training samples in 

wide fields to acquire massive amounts of samples that are se-

mantically similar to existing datasets. 

From these brief descriptions of the salient characteristics of 

the two representative ML-based generative models, it is evi-

dent that VAE emerges as a more intriguing candidate for ad-

dressing the inverse problem, since the latent spaces of the VAE 

offer the opportunity to generate the desired output that can be 

continuously and smoothly controlled by a predefined density 

function, consequently helping in the interpolation of training 

datasets. Overall, this work demonstrates the possibility of a 

small number of discrete training samples to yield infinite and 

continuous latent space using VAE, using which brand new 

shapes of meta-atoms corresponding to desired EM properties 

can be optimally synthesized. Furthermore, an additionally de-

signed network is employed to validate the reliability of the pre-

dicted outcomes. 

The achievements of the current work, distinct from previ-

ously reported studies, lie in its construction of separated latent 

spaces based on the types of scatterers, which can contribute to a 

more faithful estimation of target data. Another contribution of 

this study is its proposed approach for accomplishing end-to-

end inverse design without the help of an expensive external 

simulator. Although the applicability and capability of the pro-

posed approach are limited by its small design configurations, 

these limitations can be addressed in future research by consid-

ering increased degrees-of-freedom for the designs.  

The remainder of this paper is organized as follows: Section 

II presents a brief preliminary study of the concept of VAE and 

introduces related works on this topic, Section III details the 

primary concepts of the proposed framework, Section IV de-

scribes the experimental setup and analyzes the results, and Sec-

tion V discusses the significance and limitations of this work, 

suggests future directions for study, and concludes this article. 

II. ML-BASED INVERSE DESIGN OF METASURFACES 

This section outlines the fundamentals of the several ML-

based inverse models designed to address the inverse problem in 

metasurface design. Subsequently, the novelty of the proposed 

approach is presented, highlighting its distinct perspectives as 

compared to existing works. 

 

1. VAE for Inverse Design Process 

A VAE consists of two sub-networks—an encoder, which 

typically reduces the dimensionality of input data, and a decoder, 

which reconstructs the input data from the reduced dimensional 

variables. An autoencoder (AE) [29] possesses this fundamental 

architecture, which enables the creation of a significantly re-

duced-dimensional hidden space between the bottleneck layers 

of its two sub-networks. The distance between samples in the 

latent space, constructed through identity mapping (perfectly 

reconstructing the original input), can capture semantic differ-

ences that remain concealed when using Euclidean distance in 

the original data domain. Notably, while an AE is usually uti-

lized as a tool for feature extraction in classification problems or 

for dimensionality reduction in effective data compression, the 

VAE can also serve as a generative model by introducing sto-

chastic variations to latent variables. The detailed structure of 
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this function is illustrated in Fig. 1, where 𝑋, 𝑋෠, and 𝑧 denote 

the input data, the reconstructed data of the input, and latent 

codes, respectively. The encoder of the first sub-network, denot-

ed by 𝐸, is exploited to yield two intermediate variables, 𝜇 and 𝜎ଶ, representing the mean and variance of a Gaussian distribu-

tion, respectively. Theoretically, latent codes 𝑧 should be direct-

ly sampled using 𝜇 and 𝜎ଶ from the probability density func-

tion. However, in the given scenario, computing the derivatives 

becomes infeasible due to the randomness in the sampling step, 

which prevents the backpropagation of loss signals to previous 

layers. To address this problem, VAE employs a reparameteriza-

tion trick by introducing a noise vector 𝜀, randomly sampled 

from a normal distribution, and adding it to the variance 𝜎ଶ. 

This concept can be briefly expressed as follows: 
 𝑧 ൌ 𝜇 ൅ 𝜎ଶ⨀𝜀,          𝜀~𝛮ሺ0, 1ሻ, (1)
 

where the symbol ⨀ indicates the element-wise product, also 

known as the Hadamard product. The latent space, consisting of 

variable 𝑧, is shaped by the KL divergence scheme, as stated 

earlier. Notably, the variables sampled from the latent space can 

generate new examples (𝑋෠), which are most likely to exist in the 

original data (𝑋). Furthermore, the weights and biases of the 

learnable parameters in the neural network are optimized by 

means of a minimization strategy of the objective function, de-

fined below: 
 𝐿௏஺ாሺ𝜙, 𝜃, 𝑋ሻ ൌ 𝐾𝐿 ቀ𝑞థሺ𝑧|𝑋ሻ ∥ 𝑝ሺ𝑧ሻቁ ൅𝐿ோா൫𝑋, 𝐷ఏሺ𝑧ሻ൯, (2)
 

where the total loss of 𝐿௏஺ா is a function pertaining to 𝑋 of 

the input data, and the parameters of the two sub-networks, E 

and D, are denoted by 𝜙 and 𝜃, respectively. The first term on 

the right-hand side represents the KL divergence, quantified as 

the difference between a posterior, fitted by optimizing 𝜙 in E, 

and a predefined prior. The second term serves as a metric to 

calculate the reconstruction error of 𝑋෠, generated by 𝐷ఏሺ𝑧ሻ in 

relation to the original data 𝑋. This metric can take the form of 

the mean squared error (MSE) or a binary cross-entropy (BCE), 

depending on whether the target data consist of real values or 

binary numbers.  

The following subsection explores related research on this 

subject, especially focusing on how the standard VAE structure 

has been customized to address the inverse design of metasur-

faces. 
 

2. Related Work: Motivation of the Study 

In [26, 30], the authors demonstrated the reliable reproduci-

bility of the latent space achieved by VAE for new shapes of unit 

cells, justifying the applicability of their approaches in diverse 

scenarios. Notably, both works introduced an auxiliary network, 

termed the predictor, to tackle the one-to-many mapping prob-

lem occurring in an inverse design—one set of desired EM 

properties could be acquired by many different scatterer struc-

tures. The predictor is responsible for regularizing the latent 

variables learned through repetitive identity mapping of the 

source domain data, which might take the shape of either scat-

terers or EM properties. In other words, it is due to the effects of 

the predictor that the latent space can simultaneously represent 

the key features of two different data domains—scatterers and 

EM properties—thus, consequently being a vector in latent 

space that acts like an interpreter to translate the data of one 

domain into the data in the other domain. The architecture of 

the predictor can be realized using CNN or MLP. 

Nonetheless, the noticeable points of difference between the 

two prior works are their choice of target and source domains 

for identity mapping in the VAE and for the regression of the 

predictor. Fang et al. [30] chose scatterer shapes as the datasets 

for conducting self-supervised learning in VAE, while EM 

properties were exploited as the target variables for the predictor 

model, and the latent variables determined by VAE were the 

input. The inverse model constructed by this training scheme 

presents various inverse design strategies working separately 

according to the meticulously devised criterion established for 

assessing the relevance of the outcomes. One of the most ideal 

scenarios for inverse design, assuming no failures, is as follows: 
 

1. Prepare the desired EM properties,  

2. Randomly draw initial values from the latent space,  

3. Put the variable into the predictor network and obtain the 

predicted EM properties,  

4. Compute the difference between the resulting EM properties 

and the desired ones by running a particle swarm optimiza-

tion (PSO) algorithm,  

5. Update the latent variables based on the optimization tactic of 

the PSO,  

6. Repeat this process until a preset tolerance or an iteration 

number is reached. 
 

In contrast to the strategy adopted in [30], the authors in [26] 

employed the EM properties for learning latent representation, 

while the pattern shapes of the metasurfaces were utilized as 
 

Fig. 1. Standard structure of VAE. 
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input for the predictor performing the regression to predict la-

tent variables. Interestingly, latent variables learned by VAE 

serve as label data for the output of the predictor network. The 

learning rule for this setup can be expressed as follows: 
 𝜃௉ோா஽ ൌ argminఏ ଵ௄ ∑ 〈𝑧௝, 𝑧ఫෝ; 𝜃〉௄௝ୀଵ , (3)
 

where 𝜃 and 𝐾 denote a set of parameters of the predictor 

model and the dimension of the vectors, respectively, while 〈∙,∙〉 
indicates the Euclidean distance of the two vectors. This 

framework estimates a new metasurface design for a set of de-

sired EM properties by jointly operating the optimization pro-

cess of the inverse problem and the forward design process, tak-

ing advantage of the latent presentation that concurrently re-

tains the common nature of both domains involved.  

The two exemplified frameworks have been proven to satisfy 

diverse inverse design requests, maintaining high accuracy in a 

wide range of applications. Moreover, they offer valuable insights 

into the successful adoption of the ML-based inverse design 

approach for the synthesis of metasurfaces. However, despite 

their remarkable achievements, the previous works are character-

ized by some arguable limitations, such as their need for vast 

amounts of training datasets, the usage of a dedicated external 

simulator, and the high complexity of operation involved in 

achieving satisfactory inverse design. To address these challenges, 

the current study focuses on developing a more streamlined end-

to-end design approach that is both generally and readily appli-

cable without the need for assistance from an external simulator 

or for considering complex options in the operational process. 
 

3. The State-of-the-Art Proposed Method 

One of the significant advantages of ML-based inverse design 

methods relative to the conventional metasurface design process 

is that it does not need to conduct a brute force search by re-

peating full-wave simulations until the globally optimal solution 

is reached. However, to attain the benefits mentioned above in 

the design stage, data-driven approaches cost commensurate 

efforts—adequate data preparation, appropriate network design, 

and a robust validation process—in the model construction 

stage. The pros and cons of both concerned frameworks can be 

observed in Fig. 2, where block A visualizes the conventional 

design process and blocks B-1 and B-2 show the training phase 

and inference phase of an ML-based inverse design method, 

respectively. The symbols S and P represent the digital data cor-

responding to scatterer shapes and EM properties. It is evident 

that although the scheme in A does not require the preparation 

of a huge amount of datasets, it has to undergo many cycles of 

simulation at every design step. On the contrary, ML frame-

works are able to markedly expedite the design process, as 

demonstrated in B-2, provided reliable neural networks are built 

in the B-1 learning phase. Nevertheless, the workflow of the 

inverse design depicted in B-2 may be considered ideal or ex-

tremely simplified, given the high degree-of-freedom exhibited 

by EMMS behavior, which varies with the design configuration. 

Moreover, the topology of the design space does not allow for 

the prediction of a unique solution. As a result, previous works 

were compelled to assume complex situations and set extra plans 

to address exceptional cases, due to which these frameworks 

require either an external simulator or the intervention of a hu-

man user. Inspired by the basic ideas enshrined in these existing 

works, the current study aims to develop a fully automated end-

to-end ML-based inverse design method from scratch. To 

achieve this goal, additional useful information related to the 

geometry of EMMS, such as their types and dimension pa-

rameters, was employed. Furthermore, the architecture of the 

neural network was designed to reflect the roles pertaining to 

the additional information. Moreover, this work built separate 

latent spaces according to the types of EMMS to possibly pre-

dict equivalent EMMS shapes more precisely, owing to the re-

duction of ambiguity among the latent variables. The details are 

described in the next section. 

 

 
Fig. 2. Schematic diagrams showing the difference between a conven-

tional design and a machine learning-based design.
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III. VAE CONSTRUCTING MULTIPLE LATENT SPACES 

The notations for the symbols used to denote the variables 

and networks in this paper are provided in Table A1 of Appen-

dix. In addition, the network structures of the VAE employed 

in this study for the inverse design are detailed in Table A2. 

 

1. Data Preparation and Computing Configuration 

The success of a data-driven approach is significantly influ-

enced by the size of the training dataset and its relevance to the 

problem that users are facing, since weights in neural networks 

are fitted by interacting with features extracted from the dataset. 

To optimize the weights of a neural network, supervised-

learning models utilize the loss signals yielded in the course of 

mapping the input data to the specified target data—a process 

referred to as function approximation. Therefore, to allow the 

function to faithfully relate two different domains, the pairs of 

input and output data should be informative and straightfor-

ward. Based on the above factors, the basic idea for synthesizing 

the training dataset used in this study was inspired by [26]. Fur-

thermore, for the sake of accomplishing a more favorable func-

tion approximation, two additional data types—the class of the 

data and a set of numbers characterizing the geometry of the 

scatterer—were employed alongside the scatterer shapes and 

EM properties. These additional data not only provide in-

creased information but can also be used to validate the results 

predicted by the proposed approach. 

Meanwhile, the synthetic datasets were produced by PSS-

FSS—a free and open-source code written in Julia programming 

language that was developed to design and simulate polarization 

selective surfaces (PSSs) and frequency selective surfaces (FSSs). 

Notably, to synthesize certain types of metasurfaces, PSSFSS 

requires several parameters to define the concerned shapes and 

materials. In this study, the additional data were used as the input 

arguments, based on which a comparison of the shapes of the 

scatterers acquired from the proposed method and from the 

PSSFSS can be conducted. Fig. 3 depicts the relationship among 

the four individual datasets, where 𝐶 and 𝐷, corresponding to 

the additional dataset, are the 6-dimensional vectors specifying 

the geometry of shapes and categorical variables of one-hot en-

coding differentiating four classes of scatterer shapes, respectively. 

The denotations of 𝑆 and 𝑃 are the same as in the definition 

provided in Section II. In terms of data type, 𝑆 is a 52×52 ma-

trix consisting of elements with 1 representing a metallic area or 

0 otherwise, while 𝑃 is a vector having the length of 56. As stat-

ed earlier, while an inverse model aims to predict a corresponding 𝑆 in terms of a desired 𝑃, the proposed approach seeks im-

provement in prediction accuracy by adding 𝐶 and 𝐷 to the 

canonical inverse process. Furthermore, the synthetic datasets 

were created by increasing each dimension of 𝐷ሺ𝑑ଵ, , , 𝑑଺ሻ at 

uniform intervals with respect to four categories 𝐶ሺ𝑐ଵ, , , 𝑐ସሻ of 

surface shapes, i.e., Jerusalem cross ( JC) patch, loaded cross (LC) 

patch, JC slot, and LC slot. Notably, the patches and slots were 

distinguished by identifying whether or not their shapes were 

composed of metallic material. The values for 𝑆 and 𝑃 ob-

tained by the mean of PSSFSS are displayed in Fig. 4, where 𝑃 

considers only the reflection coefficients of EMMS. 

In addition, the parameters for the substrate material on 

which the meta-atom was placed had the same specifications as 

all PSSFSS simulations, with permittivity, loss tangent, and 

thickness of 4.4, 0.02, and 1.5 mm, respectively. The total 

number of datasets generated was 2,000, which was further di-

vided at a ratio of 4 to 1 for training and testing whether each 

type of scatterer was evenly distributed, respectively. 

 

2. Proposed Network 

The framework proposed in this study follows a cascade 

structure in which the sub-networks—encoder (En), generator 

(Ge), and decoder (De)—are sequentially connected, as exhibited 

in Fig. 5. The most significant difference of this framework from 

 

Fig. 3. Flowchart describing the process of data synthesis in PSSFSS 

for the training dataset. 
 

 
Fig. 4. Four types of scatterer shapes generated by slightly changing the 

dimensions at a constant increment. The graphs display the re-

flection coefficients relative to the corresponding scatterer shapes 

in dB scale.
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the standard VAE illustrated in Fig. 1 is the generator (Ge) posi-

tioned between the latent variables 𝑧 and the decoder (De), 

which plays a pivotal role in converting simple identity mapping 

from 𝑃 to 𝑃ᇱ into a joint learning neural network comprised of 

the inverse and forward models. Notably, during the training 

phase, the latent space learns the salient features shared by both 

the EM properties (𝑃 ) and the design parameters of the 

metasurfaces (𝐶 and 𝐷). The learnt representation can continu-

ously and infinitely span the feature space owing to the promis-

ing capability of VAE learning, although the current study used 

a discrete and small amount of training dataset, as stated in the 

previous subsection. Consequently, after terminating the train-

ing phase, 𝑧 and the generator (Ge) were detached from the 

whole network and employed in an inverse design method. In 

this context, it should be noted that the generator (Ge*) yielding 𝑆ᇱ contributed only to reliably constructing the latent represen-

tation 𝑧. The output 𝑆ᇱ was not utilized in the following net-

works, since 𝐶 and 𝐷 were adopted as parameters determin-

ing the shapes of the scatterers and not 𝑆. Fig. 3 justifies this 

strategy. In fact, it was expected that the loss signal measuring 

the discrepancy between the estimated 𝑆ᇱ and the true 𝑆 will 

have an effect on regulating the latent space because 𝑆 possess-

es the equivalent visual information for the geometry defined by 𝐶 and 𝐷. Similarly, the auxiliary output 𝑆ᇱᇱ of the decoder (De) 

predicting 𝑃 plays the same role of imposing a constraint. Re-

garding the input and output datasets of the decoder (De), inter-

estingly, it was observed that the network (De) carried out iden-

tical functions as the simulator PSSFSS, as depicted in Figure 3. 

Moreover, this study intended to enhance the fidelity of the 

generator (Ge) by evaluating the outcomes of the inverse design 

during the training phase. To achieve this, the decoder (De) was 

devised to learn the functions of the PSSFSS producing the 

shapes 𝑆 for scatterers with respect to the given 𝐶 and 𝐷 and 

then predict the EM properties 𝑃. Therefore, the updated rule 

of weights in the entire network can be expressed as follows: 
 Θ∗ ൌ argmin஀ 𝐿்௢௧௔௟ሺΘ, 𝔻ሻ 𝒔. 𝒕. 𝐿்௢௧௔௟ ൌ ଵ௎ ∑ ቀ𝛼𝐿௄௅ሺ௜ሻ ൅ 𝛽𝐿ோாሺ௜ሻ ቁ௎௜ୀଵ , (4)
 

where 𝐿்௢௧௔௟ indicates the weighted sum of the losses calculated 

by all involved loss functions with respect to the total number of 

data 𝑈, Θ denotes all learnable weights in the entire network, 𝔻 
is a generic term representing all kinds of training datasets, while 𝛼 and 𝛽 are the hyperparameters tuned by the user. Furthermore, 

in the second row of Eq. (4), 𝐿௄௅ is equal to the first term on the 

right-hand side in Eq. (2), while 𝐿ோா constitutes three loss func-

tions of the network—Ge, Ge*, and De—as follows: 
 𝐿ோா ൌ 𝐿𝑮∗ ൅ 𝐿𝑮 ൅ 𝐿𝑫,𝒔. 𝒕.𝐿𝑮∗ ൌ  െ ෍ ෍ 𝑆௜௝ log൫𝑆௜௝ᇱ ൯ ൅ ൫1 െ 𝑆௜௝൯ log൫1 െ 𝑆௜௝ᇱ ൯ହଶ

௜ୀଵ
ହଶ

௝ୀଵ ,
𝐿𝑮 ൌ  െ ෍ 𝐶௜ logሺ𝐶௜ᇱሻ ൅ ሺ1 െ 𝐶௜ሻ logሺ1 െ 𝐶௜ᇱሻସ

௜ୀଵ  
            ൅ 16 ෍ ටሺ𝐷௞ െ 𝐷௞ᇱ ሻଶ଺

௞ୀଵ , 
𝐿𝑫 ൌ െ ෍ ෍ 𝑆௜௝ log൫𝑆௜௝ᇱᇱ൯ ൅ ൫1 െ 𝑆௜௝൯ log൫1 െ 𝑆௜௝ᇱᇱ൯ହଶ

௜ୀଵ
ହଶ

௝ୀଵ   
൅ 156 ෍ ටሺ𝑃௞ െ 𝑃௞ᇱ ሻଶହ଺

௞ୀଵ , 
(5)

 

where 𝐿𝑮∗ represents the cross-entropy loss obtained on com-

puting the loss of estimates and the ground truth, while 𝐿𝑮 and 𝐿𝑫  are the loss functions obtained on computing both the 

cross-entropy and the mean squared. Notably, the types of loss 

functions were determined according to the data formats de-

fined in the previous subsection. 

 

3. Separately Distributed Latent Representations according to 

Specif ic Scatterer Types 

As mentioned before, the dimension parameters of the da-

tasets were synthesized based on four preset primitive patterns: 

JC (patch), JC (slot), LC (patch), and LC (slot). As a result, the 

frequency responses of each type of scatterer changed gradually, 

corresponding to alterations in the dimension parameters. 

However, the crucial characteristics, i.e., band pass, band stop, 

and bandwidth of the frequency response, were dominated by 

the type of primitive pattern. In this regard, identifying the type 

of scatterers prior to predicting their shapes based on a desired 

 

 
Fig. 5. Architecture of the neural network devised in this work. En-

coder (En) estimates, latent variables z, input data P, and z are 

fed into the generator (Ge). Its outputs, C' and D', are exploited 

for predicting P. 
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EM property could help enhance prediction accuracy. Along 

these lines, the authors of [21] proposed a classification for scat-

terer topologies by conducting principal component analysis 

(PCA) using a support vector machine (SVM), which repre-

sents a great achievement in the development of the inverse 

design method. Nonetheless, while this advanced approach car-

ried out the classification using external modules, this study at-

tempted to realize an end-to-end inverse design model by de-

veloping a neural network incorporating the classification pro-

cess. The core idea was to utilize the separately distributed latent 

spaces illustrated in Fig. 6, constructed during the training 

phase, and operate them at four different KL divergence terms 

relative to each class, using the following equation: 
 𝐿௄௅ ൌ ෍ ෍ ෍ 𝐾𝐿 ቈ𝑁൫𝜇௟,௖, 𝜎௟,௖ଶ ൯,𝑁୧ୢ൫𝜇௜, 𝜎௜ଶ൯ ቉ ∙ 𝕀௖ୀ௜,ସ௜ୀଵସ௖ୀଵଵ଺௟ୀଵ  (6)
 

where 𝑁 implies that the Gaussian distribution is fitted by 𝜇௟,௖ 

and 𝜎௟,௖ଶ , which denote the mean and the variance, respectively, of a 

variable of 𝑙୲୦ dimension among 16-dimensional variables corre-

sponding to 𝑐୲୦ class. Notably, these variables are learning 𝜇௜ and 𝜎௜ଶ, which refer to the pre-defined ideal values according to the 

types of scatterer shapes. Furthermore, 𝕀 symbolizes an indicator 

function whose output is 1 in the case of 𝑐 ൌ 𝑖, otherwise 0. 

IV. EXPERIMENTS AND RESULTS 

This section details the experimental setup and validates the 

results of the proposed approach based on three aspects. 
 

1. Experiment Configuration 

All simulations were conducted on a PC equipped with 32 GB 

RAM and an Intel Core i7-12700F CPU at 2.10 GHz. A total 

of 2,000 samples (500 samples per class across four classes) were 

synthesized, in accordance with the process described earlier. The 

samples were then divided into 1,600 training samples and 400 

test samples, maintaining proportional representation across clas-

ses. The synthetic unit cells had a periodicity of 15 mm, and were 

postulated to activate at 10 GHz of the center frequency. In the 

training phase, the datasets were grouped into batches of 32 sam-

ples, using which the learnable parameters of the networks were 

updated for 1,000 epochs. Moreover, for evaluation, the meta-

atoms considered in the proposed inverse design method were 

simulated using PSSFSS, and the corresponding EM properties 

were estimated and then compared to the desired EM properties 

to establish the ground truth of the experiment. To measure pre-

diction accuracy, this study employed the mean absolute error 

(MAE) of the computing differences between the two EM prop-

erties at each frequency point, which can be formulated as: 
 𝑀𝐴𝐸൫𝑃, 𝑃෠൯ ൌ ଵே ∑ ห𝑃௜ െ 𝑃෠௜หே௜ୀଵ , (7)
 

where 𝑃 and 𝑃෠ are the desired and predicted EM properties, 

respectively, and 𝑖 denotes one frequency point in 56 (𝑁) points. 

 

2. Reconstruction Accuracy of Test Datasets 

The reconstruction accuracy of the proposed network was in-

vestigated using the test datasets. Fig. 7 describes the network 

pipeline for implementing identity mapping to the EM proper-

ties. In this test, the latent space was formed only by the estimat-

ed mean values without variances, indicating that the inference 

should be a deterministic process. As stated earlier, since 𝑆ᇱᇱ 
was treated as just a dummy variable in the inference phase, the 

performance in this test was evaluated by calculating the MAE 

between 𝑃 and 𝑃ᇱ. In Fig. 8, the reconstructed data, represent-

ed by red dotted lines, are compared to the reflection coefficients 

of the true samples, plotted using blue lines. A visual assessment 

of the figure shows consistency between the recovered data and 

the input samples. Furthermore, Fig. 9 compares the means of 

the 400 samples at every frequency point of the true samples 

(blue line) and the estimated results (red line). The MAE calcu-

lated for all frequency points was estimated to be 0.57. From the 

numerical results and visual assessment in Figs. 8 and 9, it is ob-

served that the identity mapping process for the EM properties, 

as depicted in Fig. 7, exhibits satisfactory reconstruction accuracy, 

implying that the individual sub-networks had faithfully learned 

the relationships among the input-output data pairs involved in 

learning whole networks. The following subsection examines the 

prediction accuracy of the inverse design for scatterer shapes. 

 
Fig. 6. Separately distributed latent spaces built by the four different 

KL-divergence terms. 

 

 
Fig. 7. Schematic diagram showing the network pipeline for imple-

menting identity mapping on the EM properties in the test da-

tasets.
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3. Evaluation of the Scatterers Reconstructed from Randomly 

Chosen Latent Variables 

To confirm whether the latent variables continuously and 

smoothly spanned the sample space ሺ𝑍ሻ during the training 

phase while using a small amount of discrete training datasets, 

samples ሺ𝑧௜′𝑠ሻ from the latent space were randomly drawn and 

fed into the PSSFSS and the decoder (De) through the generator 

(Ge), as shown in Fig. 10. The 𝐶ᇱ and 𝐷ᇱ, estimated by the gen-

erator (Ge) using input 𝑧௜, fully contained the geometric infor-

mation necessary for synthesizing a metasurface using PSSFSS. 

As mentioned earlier, PSSFSS predicts 𝑃  after producing 𝑆 

using inputs 𝐶 and 𝐷. Hence, if the result of 𝑀𝐴𝐸ሺ𝑃, 𝑃ᇱሻ is 

meaningfully tiny, it indicates that the latent space 𝑍 is able to 

accurately represent the infinite EM properties created following 

the rule by which the training datasets are synthesized. More spe-

cifically, assuming that the desired EM property is 𝑃෠ሺൌ 𝑃ሻ, 𝑃ᇱ 
decoded from both 𝐶ᇱ and 𝐷ᇱ must be comparable to 𝑃෠ due 

to the small amount of error of MAE, while 𝑃∗ ൌargmin௉ᇲ 𝑀𝐴𝐸ሺ𝑃෠, 𝑃ᇱሻ can be estimated using trustworthy opti-

mizers, such as PSO [31] or genetic algorithm [32]. As a result, 𝐶ᇱ and 𝐷ᇱ, as estimated by (Ge), are equivalent to the shape of 

the meta-atom 𝑆 inversely designed by the proposed framework, 

as illustrated in Fig. 5. Fig. 11(b) exhibits the shapes of the scat-

terers 𝑆ᇱᇱ yielded by the proposed inverse design method, while 

Fig. 11(a) compares the EM properties (red dotted line) predicted 

by the PSSFSS simulator, using 𝑆ᇱᇱ and the EM properties (blue 

line) produced by the variables in the latent spaces. In addition, 

the simulation results (green asterisk symbol *) of HFSS were 

simultaneously compared to substantiate the reliability of the 

simulation accuracy estimated by PSSFSS. A visual comparison of 

the red, green, and blue lines in Fig. 11(a), along with the MAE 

values on each graph, demonstrates the accuracy of the proposed 

inverse design method, both visually and numerically. While 

slight discrepancies exist in the results in the second row, the loca-

tions of peaks and troughs, as well as the trend of the transition, 

closely resemble the ground truth (the red and green lines). 
 

4. Efficacy of Separately Distributed Latent Space 

Finally, the impact of separately distributed latent spaces was in-

vestigated by comparing two cases—one with and one without the 

associated scheme. The test configurations were equal to the setup 

described in Sections IV-2 and IV-3. In the absence of the scheme, 

the reconstruction error (MAE) relative to the 400 test samples 

was 0.78, which was greater than the result acquired using sepa-

rately distributed latent spaces by approximately 0.2. This implies 

that the model without the scheme demonstrated inferior estima-

tion performance compared to the proposed method. In Fig. 12, 

the results obtained using the inverse design model with a single-

distribution latent space are compared to those of PSSFSS and 

HFSS. The prediction error (MAE) of the variables sampled from 

the latent space is observed to be higher than the values computed 

with regard to the proposed approach in Fig. 11. Figs 13 and 14 

 
Fig. 8. Red dotted lines indicate the reflection coefficients estimated by 

the workflow depicted in Fig. 7, while blue lines indicate the 

ground truth. 
 

 
Fig. 9. The red dotted line and the blue line plot the mean reflection 

coefficients of the estimated outcomes and true samples, re-

spectively. The total number of tested datasets was 400.

 

 
Fig. 10. Randomly sampled variables (zi's) pass the generator (Ge), 

which estimates the class and dimension, after which the out-

puts are fed into both the PSSFSS and the decoder (De). 
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clearly explain the consequences—the latent variables in Fig. 13 

exhibit a single Gaussian distribution, while the variables in Fig. 14 

show multiple peaks, similar to the Gaussian mixture model. No-

tably, this study intended to impose this characteristic of distribu-

tion on the latent space by taking advantage of Eq. (6) so that vari-

ables belonging to a certain class of scatterers could be sampled in 

terms of a unique mean value for the class. Using this strategy, var-

iations in the EM properties for each class were clustered on a 

space independent from other classes, as illustrated in Fig. 6, mak-

ing the process of searching relevant variables in the latent space 

more efficient and reliable. Nevertheless, in contrast to the ex-

pected outcome, the distributions exhibited in Fig. 14 do not char-

acterize the perfect four Gaussian mixture model, with the distri-

bution of 𝑍ሾ12ሿ seemingly failing to learn the mixture distribu-

tion As mentioned before, only 2,000 samples were analyzed in 

this study, which were again split into 500 samples for each class. It 

is evident that the quantity of datasets used is inadequate for fully 

learning the intended distribution during the training phase. 

However, increasing the number of training datasets is likely to 

address this problem. The following section highlights the signifi-

cance and contribution of the current study while also noting the 

limitations of the current work and directions for future research. 

V. DISCUSSION AND CONCLUSION 

In this study, latent variables produced by self-supervised 

learning in VAE successfully created a sample space capable of 

effectively expressing semantic representations that are typically 

entangled in the original data domain [33]. Furthermore, the 

latent space is smoothly and continuously spanned by the relat-

ed variables owing to the KL divergence term that helps meas-

ure similarity losses between latent space distribution and the 

standard Gaussian function (zero mean and unit variance). As a 

result, the latent representation is able to infinitely yield new 

samples that do not exist in the original dataset but can poten-

tially be found in the data domain. 

In this context, previous works [26, 29] developed their own 

novel frameworks for the inverse design of metasurfaces, adopting 

VAE as a generative model and devising regularization manners 

to simultaneously extract and link features drawn from both the 

shape and scattering properties of an EMMS. Inspired by the 

achievements of these works, this study proposes a state-of-the-

art methodology for streamlining and automating the structures 

proposed by these existing works by introducing a neural network 

architecture to process multimodal datasets and creating separate-

ly distributed latent space. The proposed network was constructed 

using the standard VAE, which was modified to deal with heter-

ogeneous data formats and to regularize the latent space. The 

most noticeable difference between the proposed network and the 

existing ones is the generator network situated between the bottle 

neck layer and the decoder, which played a critical role in the 

formation of the inverse model and forward models. After com-

pleting the model training, the generator successfully predicted 

the shape of the scatterers using the input of latent variables. The 

output of the sub-network was then fed into the decoder to eval-

uate the predicted outcomes. In this context, the decoder func-

tions as a simulator—validating the outcomes of the inverse mod-

el—similar to the operating mechanism of the PSSFSS. Conse-

quently, the entire network was able to operate as an end-to-end 

model without relying on an external simulator. 

     (a) (b)

Fig. 11. Results obtained on considering separately distributed latent 

spaces. The blue lines in column (a) are equivalent to the de-

sired EM property found in the latent space Z, which corre-

sponds to P'. Column (b) shows the inversely designed scat-

terer relative to P' and yields the red dotted lines in (a) after 

PSSFSS simulation. In column (a), the green colored symbol 

“*” represents the results acquired from the HFSS simulation. 

The abbreviations on the images in column (b) indicate the 

types of scatters, as defined in Fig. 4. 
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Notably, the existing works [18, 21] introduced an extra step 

classifying the topologies of metasurfaces before employing an 

inverse design network to enhance learning performance. Con-

sequently, these approaches necessitated the use of supplemen-

tary classification methods, such as PCA or SVM, alongside the 

inverse model. However, unlike previous works, the current 

study attempted to build a streamlined framework by integrat-

ing the scheme for carrying out the classification function into 

the neural network while also devising separately distributed 

latent space by modifying the KL divergence term to enable 

multiple-distribution learning. This novel idea made the opera-

tion of the entire framework simpler while also enhancing the 

prediction accuracy, as demonstrated in Section IV-4. 

Nonetheless, it must be acknowledged that the applicability 

of the proposed approach is limited by the few types of scatter-

ers considered in the training datasets and the extremely simple 

rules considered while synthesizing the datasets. It is well 

     (a) (b)

Fig. 12. Results obtained on using latent space with single distribution. 

The blue lines in column (a) are equivalent to the desired EM 

property found in the latent space Z, which corresponds to P'. 

Column (b) shows the inversely designed scatterer relative to 

P' and yields the red dotted lines in (a) after PSSFSS simula-

tion. In column (a), the green colored symbol “*” represents 

the results acquired from the HFSS simulation. The abbrevia-

tions on the images in column (b) indicate the types of scatters, 

as defined in Fig. 4. 

 

 
Fig. 13. Distributions of individual variables trained with zero mean 

and unit variance. 
 

 
Fig. 14. Distributions of the individual variables trained by four differ-

ent means, each of which was spaced apart at equal distances.
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known that the number of parameters defining the geometric 

shapes and material properties of metasurfaces is far greater than 

those used in this study for generating the synthetic data for the 

simulation. Since design parameters encapsulate the physics 

governing the interaction between the scatterer and EM waves, 

it is imperative for a robust and widely applicable inverse design 

method to take the form of an ML model trained on an exten-

sive dataset covering a diverse range of parameters and capable 

of accommodating all possible environmental conditions. How-

ever, data-driven approaches inevitably face challenges due to 

the lack of relevant datasets. Thus, instead of the exhaustive 

collection of necessary datasets, alternatives such as simple data 

augmentation tricks, transfer learning techniques, and genera-

tive models have been developed in the literature to circumvent 

this intrinsic problem [34]. Among these techniques, VAE is 

one of the most preferable methods for reproducing realistic 

datasets. Several variation models customized from the basic 

structure of the VAE have reported promising outcomes and 

exhibited great potential for use in the EMMS inverse design 

method. 

In future studies, latent space learning in VAE should play a 

more crucial role in efficiently representing broad and complex 

design spaces by accounting for multilayer surfaces, surface 

thickness, various scatterer shapes, and other indispensable de-

sign parameters. In addition, the researchers plan to introduce 

more diverse multimodal datasets and design a more sophisti-

cated network pipeline for processing heterogeneous datasets to 

achieve broader applications. 

This work was supported in part by the Basic Science Re-
search Program (Grant No. 2020R1I1A3057142), in part by 
the Priority Research Center Program through the National 
Research Foundation (Grant No. 2019R1A6A1A03032988), 
and in part by the National University Development Project of 
the Ministry of Education in 2023. 

APPENDIX 

Table A2. Network overview of the VAE considered in this study

Network of VAE

Encoder (En) Input layer: 1×56 (1D array) 

Three iterations with 

different number of neurons 

(512, 256, 128) 

- 
Fully connected (FC) layer (neurons: 512)

Activation (relu) 

Dropout (rate: 0.4)

Fully connected layer (neurons: 32) 
Output: means (1×16), variances (1×16) - 

Activation (linear)

Generator (Ge) Input layer: 1×16 (1D array) Dimension of latent space (16) -

FC layers (neurons: 128, 64, 4), relu, dropout (0.4) Output: 4-class

Parallel  

connection 

FC layers (neurons: 128, 64, 6), relu, dropout (0.4) Output: 6-dimension 

FC layers (neurons: 1024, 128×128), relu, dropout (0.4)
Output: 5×52 image 

Conv (128×128, 52×52), relu 

Decoder (De) Input layer: 1×10 (1D array) Concatenated (1×4, 1×6) -

FC layers (neurons: 512, 256, 56), relu, dropout (0.4) Output: scattering property (1×56) 
Parallel 

connection 
FC layers (neurons: 512, 128 × 128), relu, dropout (0.4)

Output: 52×52 image 
Conv (128×128, 52×52), relu 

Table A1. Definition of the notations used to denote the variables and 

networks in this paper 

Notation Description Remarks

P Reflection coefficients (input data) Vectors of 56 dimensions

D Dimensions of meta-atom’s shape 

(target data) 
Vectors of 6 dimensions

C Classes of meta-atom (target data) See Fig. 4

S Image of meta-atom (target data) Matrix of 52 × 52

Z Variables in latent space 

σ2 Variance of latent space 

μ Mean of latent space 

En Encoder (network of VAE) 

Ge Generator (network of VAE) 

De Decoder (network of VAE) 

The symbols prime (') and double prime ('') represent the estimated

results.
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