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I. INTRODUCTION 

Electromagnetic radiation sources (EMRSs) usually cause in-

terference with electronic devices at the same frequency. In the 

context of electromagnetic environment monitoring systems, it is 

crucial to separate electromagnetic radiation signals of the same 

frequency to accurately detect and identify electromagnetic inter-

ference sources [1]. Blind source separation (BSS) is a technique 

that can extract source signals from mixed signals captured by 

multiple sensors, and this has been widely applied in speech pro-

cessing [2], biomedical signal processing [3], image processing 

[4], fault diagnosis [5], and many other fields. 

Traditionally, BSS can be assigned to overdetermined cases (M 

> P), determined cases (M = P), and underdetermined cases (M 

< P). Here, P is the number of sources, and M is the number of 

sensors. Currently, BSS methods can be broadly classified into 

three main categories, which are based on independent compo-

nent analysis (ICA) [6], nonnegative matrix factorization (NMF) 

[7], and sparse component analysis (SCA) [8], respectively. The 

algebraic Jacobi method is used for the eigenvalue decomposition 

of FastICA [9], which improves the computation speed. How-

ever, it is not applicable to underdetermined cases. Leplat et al. 

[10] proposed a new NMF model based on the minimization of β-divergences and a penalty term for blind audio source separa-

tion. Ince and Dobigeon [11] introduced a residual weighting 

mechanism into the NMF for hyperspectral separation. However, 
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NMF is very sensitive to noise and initialization, and its use for 

underdetermined BSS requires prior knowledge of various 

sources. The SCA-based method is the most popular underde-

termined BSS method nowadays, which consists of three stages. 

The first stage is mixed signal sparsity, commonly transforming 

the observed signals into the time-frequency domain [12, 13] to 

ensure that the source signals are sparse enough, which is not suit-

able for multiple radiation sources of the same frequency. The sec-

ond stage is the mixing matrix estimation, where the most com-

mon method is clustering, in which the mixing matrix estimation 

is transformed into an eigenvector clustering problem [14–16]. 

The unknown number and initial values of clusters make it very 

difficult to estimate the mixing matrix. The third stage is source 

recovery, which reconstructs the most likely version of the true 

sources by building an optimization model. For example, l1-norm 

penalized least squares is used to derive the sparsity-based non-

linear signal separation model in [17]. Mixing matrix estimation 

and source recovery in underdetermined cases are still tricky 

problems. Moreover, the number and direction-of-arrival (DoA) 

of sources are crucial to mixing matrix estimation. 

Recently, due to the increased availability of computing re-

sources and the advancements in deep learning, the methods for 

estimating the number of sources and DoA have seen a shift to-

ward the use of fully connected (FC) networks [18] and convo-

lutional neural networks (CNNs). However, networks composed 

entirely of FC layers require more optimization parameters and 

computational resources. DoA estimation networks based on 

CNN discretize the angular domain into grids and deduce the 

DoA by determining the peak values in the respective spectrum 

[19, 20]. A drawback of this approach is that a minimum direc-

tion difference between the two sources and the number of 

sources must be predefined so that each grid is associated with 

only one possible source. 

This paper discusses a method for separating EMRSs of the 

same frequency, even when the number of sources is unknown. 

The major contributions are three-fold. 

1) A new separation method for EMRSs is proposed, which 

includes five steps: spatial spectrum estimation, EMRS number 

and DoA estimation, mixed matrix estimation, separation matrix 

estimation, and source signal recovery. 

2) A pseudospatial spectrum estimation network (PSSNet) 

with a symmetrical CNN structure and a fusion layer is proposed 

for the first time in this field of application to estimate the num-

ber and DoA of EMRSs and the mixing matrix. 

3) A new loss function is proposed as the optimization crite-

rion to estimate the separation matrix. The separation matrix is 

estimated by optimizing network parameters for the first time. 

The following mathematical notations are used throughout 

the paper: lower-case letters refer to variables, upper-case letters 

to scalars, bold lower-case letters to vectors, and bold upper-case 

letters to matrices. Transposition and Hermitian transposition of 

a vector and matrix are, respectively, denoted by [ ]்  and [ ]ு. Estimators are denoted by adding a hat onto the estimated 

variable. 𝑗 = √−1  represents the imaginary unit. Other nota-

tions are explained where they first appear. 

II. PROCEDURE OF THE PROPOSED SEPARATION METHOD 

FOR ELECTROMAGNETIC RADIATION SOURCES 

Inspired by the three stages of the BSS method based on SCA, 

an EMRS separation method is proposed, the flow chart of 

which is depicted in Fig. 1. In detail, it consists of five steps: spa-

tial spectrum estimation, estimation of the number and DoA of 

EMRSs, mixing matrix estimation, separation matrix estimation, 

and source signal recovery. 𝑋(𝑡) is the observed signal obtained through the array sam-

pling system, which is 
 𝑋(𝑡) = 𝐴𝑆(𝑡) + 𝑁(𝑡), (1)
 

where 𝑋(𝑡) = [𝑥ଵ(𝑡), 𝑥ଶ(𝑡),⋅⋅⋅, 𝑥ெ(𝑡)]் is the radiation signal 

observed by M arrays at time 𝑡, 𝑆(𝑡) = [𝑠ଵ(𝑡), 𝑠ଶ(𝑡),⋅⋅⋅, 𝑠௉(𝑡)]் 

is the source signals matrix of P EMRSs, A denotes M × P di-

mension mixing matrix, and 𝑁(𝑡) = [𝑛ଵ(𝑡), 𝑛ଶ(𝑡),⋅⋅⋅, 𝑛ெ(𝑡)]் 

represents additive white Gaussian noise. 

Array sampling systems usually observe electromagnetic radi-

ation signals in a given environment through a uniform circular 

array (UCA) antenna. With the UCA center as the reference 

point, then the delay of the p-th source signal received by the m-

th array and the reference point can be expressed as 
 𝜏௠൫𝜃௣൯ = ோ஼ 𝑐𝑜𝑠 ቀ𝜃௣ − (௠ିଵ)ଶగெ ቁ, (2)
 

where 𝜃௣ denotes DoA of the p-th source signal, R is the radius 

of the UCA, and C is the propagation speed of the radiation sig-

nal in space. The M × P dimensional mixing matrix is composed 

of P steering vectors, which is 

 

 
Fig. 1. Flow chart of the proposed electromagnetic radiation source 

separation method. 
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𝐴 = [𝑎ଵ(𝜃ଵ), 𝑎ଶ(𝜃ଶ),⋅⋅⋅, 𝑎௉(𝜃௉)], (3)𝑎௣൫𝜃௣൯ = [𝑒𝑥𝑝 ቀ𝑗2𝜋𝑓𝜏ଵ൫𝜃௣൯ቁ , 𝑒𝑥𝑝 ቀ𝑗2𝜋𝑓𝜏ଵ൫𝜃௣൯ቁ, … , 𝑒𝑥𝑝 ቀ𝑗2𝜋𝑓𝜏௠൫𝜃௣൯ቁ]T. (4)

 

The steering vector of the p-th source signal is shown in Eq. 

(4), which is located at the top of the page. Let 𝐴መ be the estima-

tion of the mixing matrix and 𝐵  be the 𝑃 × 𝑀  dimensional 

separation matrix. In the case of ignoring noise, the recovered 

source signal 𝑆መ(𝑡) can be written as 
 𝑆መ(𝑡) = 𝐵𝐴መ𝑆(𝑡). (5)
 

Obviously, the source signal can be well recovered when 𝐵𝐴መ =𝐼, where I denotes the unit matrix. In the determined case, 𝐴መ is 

a non-singular matrix, and 𝐵 is the inverse of 𝐴መ. However, it is 

still a great challenge to estimate 𝐴 and 𝐵 in overdetermined 

and underdetermined cases.  

Therefore, the PSSNet based on CNN is built to get 𝐴መ by es-

timating the number and DoA of sources first. Afterward, 𝐴 

new loss function is proposed as the optimization criterion to es-

timate 𝐵. 

III . PSSNET AND MIXING MATRIX ESTIMATION 

Utilizing neural networks to directly estimate the number and 

DoA of sources, one needs to define the maximum number of 

sources. In this section, the new PSSNet is constructed to gener-

ate a sharp PSS of sources. Then, the accurate source number and 

DoA are obtained according to the pseudospatial spectrum, and 

the mixed matrix is calculated according to Eqs. (3) and (4). Fig. 

2 shows the architecture of PSSNet, which includes data prepro-

cessing, two identical CNN-based subnetworks, and a fusion 

layer. 

First, the observed signal is preprocessed. The observed signals 

from the array sampling system are in matrix form; its covariance 

matrix is a symmetrical complex matrix, so only the upper right 

corner elements are taken as the input of PSSNet for reducing 

the calculation, which has been shown to be a good pre-pro-

cessing step for the complex observed signals in DoA estimation 

[21, 22]. The complex vector requires a complex deep network to 

implement the mapping. Therefore, the real and imaginary parts 

of the input vector are separated as 𝑟ோ and 𝑟ூ and are input to 

two subnetworks, respectively. 

Second, based on the advantages of “local connection” and “pa-

rameter sharing” of CNN [23], the CNN-based subnetwork is 

constructed to quickly map the real and imaginary parts of the 

input vector to the spatial probability, which consists of five con-

volutional (Conv) layers with rectifier linear units (ReLUs), one 

flatten layer, one dropout layer, one batch normalization (BN) 

layer, and one FC layer. One max pooling is used after each Conv 

layer to select the local maximum of the vector as a statistic to 

highlight the amplitude characteristics of the radiation source. 

The FC layer maps the previously obtained feature vector to a 

361-dimensional vector, representing the probability of source 

signals in directions 0°, 1°, ..., 360°. The output of two subnet-

works are denoted as 𝑜ොோ = [𝑜ොோ଴, 𝑜ොோଵ,⋅⋅⋅, 𝑜ොோଷ଺଴]  and 𝑜ොூ =[𝑜ොூ଴, 𝑜ොூଵ,⋅⋅⋅, 𝑜ොூଷ଺଴]. 
Third, the fusion layer is proposed to fuse the outputs of two 

subnetworks into one vector. The output of PSSNet is expected 

to be a “needle-like” PSS; i.e., the source signal has a probability 

of 1 in its direction, otherwise 0. The output labels for both sub-

networks are the same, so the smaller one close to 0 or the larger 

one close to 1 in the output of two subnetworks are selected in 

the fusion layer. Let 𝑜 = [𝑜଴, 𝑜ଵ,⋅⋅⋅, 𝑜ଷ଺଴] be the output label of 

PSSNet and the two subnetworks, then the i-th output value of 

PSSNet is 
 𝑜ො௜ = (1 − 𝑜௜) ⋅ 𝑚𝑖𝑛[𝑜ොோ௜, 𝑜ොூ௜] + 𝑜௜ ⋅ 𝑚𝑎𝑥[𝑜ොோ௜, 𝑜ොூ௜], (6)
 

where 𝑜௜ ∈ [0,1] is the i-th output label of the two subnetworks. 

Consequently, the estimation of PSS is 𝑜ො = [𝑜ො଴, 𝑜ොଵ,⋅⋅⋅, 𝑜ොଷ଺଴]. 
Fourth, the estimation of PSS is formulated as a multilabel 

multiclassification problem, which includes 361 classes. There-

fore, the loss function of PSSNet can be expressed as a binary 

cross-entropy loss [24]. Specifically, 
 

 

Fig. 2. The architecture of the proposed PSSNet.  
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𝐿௉ௌௌாே௘௧ = − ଵொ ∑ ∑ ൫𝑜௜௤ 𝑙𝑜𝑔 𝑜෣ ௜௤ +ଷ଺଴௜ୀ଴ொ௤ୀଵ                 ൫1 − 𝑜௜௤൯ 𝑙𝑜𝑔൫1 − 𝑜ො௜௤൯൯, (7)
 

where 𝑄  is the number of samples. 𝑜௜௤ ∈ [0,1]  denotes the  

output label of the q-th sample. 𝑜ො௜௤ ∈ [0,1] is the network out- 

put of the q-th sample, that is, the estimation of the PSS of the 

q-th sample in the direction i, which is calculated by (6). It can be 

seen that if the direction of a source signal is i and its output label 𝑜௜ is 1, then the estimation of the PSS (𝑜ො௜) is 1 when 𝐿௉ௌௌாே௘௧ 

reaches the minimum 0 through the Adam optimization algo-

rithm [25], but is 0 in other directions. The convergence speed is 

improved since the parameters are generally steady. After several 

forward and backward propagations until 𝐿௉ௌௌாே௘௧  conver-

gences, the PSSNet is finally trained. 

Finally, the DoA and number of EMRSs are estimated, and 

the mixed matrix is calculated. The “needle-like” PSS obtained by 

PSSNet is the probability distribution of radiation sources in 

space, which is sparse enough to easily obtain the number and 

DoAs of radiation sources. In theory, the DoAs of EMRSs are 

indices of 1 in the PSS estimation vector, and the number of 

EMRSs is the number of 1 in the PSS estimation vector. Unfor-

tunately, the loss function is difficult to converge to 0, and it can 

only be infinitely close to 0. Again, 𝑜ො௜ is very close to 1, but is 

not 1. Therefore, we estimate the DoAs of EMRSs by calculating 

the index of the PSS maximum, which can be expressed mathe-

matically as 
 𝐷𝑜𝐴𝑠_EMRS= ቄ𝑖 ቚ 𝑚𝑎𝑥ଵஸ௜ஸଷ଺଴[𝑜ො௜ିଵ, 𝑜ො௜, 𝑜ො௜ାଵ]ቅ. (8)
 

Thus, the number of EMRSs is estimated by determining the 

number of set elements in (8). The mixing matrix of multiple 

EMRSs with the same frequency is easily calculated according to 

(3) and (4). 

IV. SEPARATION MATRIX ESTIMATION AND  

SOURCE SIGNAL RECOVERY 

According to the analysis in Section II, accurate source signal 

recovery needs to satisfy 𝐵௉×ெ ⋅ 𝐴ெ×௉ = 𝐼௉×௉. In other words, 𝑏௣ ⋅ 𝑎௣ needs to be 1, where 𝑏௣ denotes the p-th row of 𝐵, and 𝑎௣ is the p-th column of 𝐴. Inspired by the contrastive loss [26], 

we constructed a new loss function as the criterion for estimating 

the separation matrix: 
 𝐿ௌொ = ଵ௉ ∑ 𝑚𝑎𝑥ൣ൫1 − 𝑏௣ ⋅ 𝑎௣൯, 0൧ଶ௉௣ୀଵ , (9) 
 

where P is the number of EMRSs, and 𝐿ௌொ is known as the 

loss of separation matrix estimation. 𝑏௣  is optimized to make 𝑏௣ ⋅ 𝑎௣=1, which can be expressed as 
 

𝑏௉(𝑘 + 1) = 𝑏௉(𝑘) + 𝛼 ⋅ డ௅ೄಾಶడ௕ , (10) 
 

where 𝑘  represents the number of iterations, and 𝛼  is the 

learning rate. The partial derivative 
డ௅ೄಾಶడ௕  is 

 డ௅ೄಾಶడ௕ = 2൫1 − 𝑎௣ ⋅ 𝑏௣൯ ⋅ 𝑎௣், (11)
 

where 𝑎௣்  is transposition of 𝑎௣ . The separation matrix 𝐵  is 
estimated through multiple iterations. 

Finally, the source signals are recovered by 
 𝑆መ(𝑡) = 𝐵𝑋(𝑡). (12)
 

This shows that the p-th recovered signal is the product of the 

p-th row vector of the separation matrix and the observed signal. 

Likewise, all source signals are recovered in sequence. 

The performance of the separation method can be evaluated 

by the correlation coefficient (CC) and the root mean square error 

(RMSE) [17]. The closer the CC is to 1, and the closer the 

RMSE is to 0, the better the separation performance of the 

method. 

V. EXPERIMENTS AND ANALYSES 

The simulated data are generated and used together with the 

measured data to train PSSNet and optimize the separation ma-

trix to ensure the generalization of the proposed separation 

method. All experiments are performed on a computer with an 

Intel Core i5-1135G7@2.40 GHz. PSSNet is built, trained, and 

tested on Python 3.6. Simulated data generation and prepro-

cessing, separation matrix estimation, and source signal recovery 

are completed on MATLAB R2018b. 

 

1. Experimental Datasets 

Five simulated EMRSs are used to generate the simulated da-

taset, whose time domains are shown in Fig. 3. EMRS1 is a nar-

rowband radiation source with a stable amplitude, represented by 

a chirp signal. EMRS2, EMRS3, and EMRS4 are wideband ra-

diation sources with varying amplitudes. EMRS2 is denoted by a 

standard normally distributed noise signal, whereas EMRS3 and 

EMRS4 are represented by Gaussian pulse-modulated signals. 

Their occurrence times, amplitudes, and directions are different. 

EMRS5 is a wideband radiation source with a stable amplitude, 

which is represented by a phase modulation signal. Their center 

frequency is 110 MHz. The directions of the five EMRSs are de-

noted by 𝜃ଵ, 𝜃ଶ, 𝜃ଷ, 𝜃ସ, and 𝜃ହ, respectively. The sampling fre-

quency is 103 MHz, and the record time for each sample is 1 μs. 

The method for generating simulated data for multiple 

EMRSs is referred to [22]. Let the direction difference between 

the five EMRSs be 𝛥𝜃 = ሼ2∘, 4∘,⋅⋅⋅ ,40∘ሽ . When the five  
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Fig. 3. Time-domain waveforms of five simulated EMRS. 

 

EMRSs work at the same time, 𝜃ଵ , 𝜃ଶ , 𝜃ଷ , 𝜃ସ , and 𝜃ହ  take 

values in sequence in the interval [0∘, 360∘ − 4𝛥𝜃], [0∘ + 𝛥𝜃, 360∘ − 3𝛥𝜃] , [0∘ + 2𝛥𝜃, 360∘ − 2𝛥𝜃] , [0∘ + 3𝛥𝜃, 360∘ − 𝛥𝜃] ,  
and [0∘ + 4𝛥𝜃, 360∘]  at intervals of 1°, respectively. Thus, 

5,540 observed signal samples can be generated. Again, 5,960 ob-

served signal samples can be generated when any four of them 

work together, Also, 6,380 observed signal samples can be gener-

ated when any three of them work together, and 6,800 observed 

signal samples can be generated when any two of them work to-

gether. The observed signal samples with the number of arrays of 

4, 5, and 6 are simulated, respectively. 

Three actual EMRSs are used to obtain the measured dataset. 

Fig. 4 shows the experimental scene. A UCA antenna with seven 

arrays and a receiver is used to collect measurement data from 

three actual EMRSs. The UCA is above the turntable, with 72 

grids and an average interval of 5°. The actual EMRSs and trans-

mit antennas are placed about 20 m away from the UCA, as 

shown in the red circle and rectangle in Fig. 4(a). The three actual 

EMRSs are shown in Fig. 4(b), which are the actual signal gen-

erator, unauthorized broadcast, and signal jammer, and marked as 

EMRS6, EMRS7, and EMRS8, respectively. 𝜃଺ , 𝜃଻ , and 𝜃଼ 

represent their directions. EMRS6 and EMRS7 are narrowband 

radiation sources with stable amplitudes. Their frequencies are set 

to 110 MHz, and the transmit powers are 15 dBm and 150 dBm, 

respectively. EMRS8 is a broadband radiation source with a stable 

amplitude that can generate 100–2,600 MHz radiation signals 

within a radius of 5–20 m. The measured in-phase compo-

nent/quadrature component (I/Q) sequences are taken as ob-

served signal samples. 

The interval of the turntable is 5°, so the direction difference 

of the three actual EMRSs is set to 𝛥𝜃ଵ = ሼ5∘, 10∘,⋅⋅⋅ ,50∘ሽ .  

 
(a) 

 

 
(b) 

Fig. 4. Measurement of the experimental scene of the actual EMRSs: 

(a) the experimental scene and (b) three actual EMRSs. 

 

Therefore, 620 I/Q sequence samples are measured when they 

work together. Moreover, 675 I/Q sequence samples are obtained 

when any two of them work at the same time. 

 

2. Verif ication Experiment 

The datasets are used to verify the proposed separation method 

for electromagnetic radiation sources. First, 80% of the samples 

are used as the training set and 20% as the test set to train and 

test the PSSNet. The learning rate, epochs, and the number of 

each batch for the BN layer are set to 0.01, 64, and 1,000, respec-

tively. Fig. 5 shows the training and test loss curves of PSSNet. 

With the increase in epochs, both the training loss and the test 

loss gradually converge to a stable value close to 0, which means 

that the PSSNet is well-trained.  

 

 
Fig. 5. Training and test loss of the PSSNet. 
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Fig. 6. Pseudospatial spectrum of five simulated EMRSs. 

 

One test sample of the five simulated EMRSs, generated when 

the directions are 30°, 35°, 100°, 102°, and 200°, the signal-to-

noise ratio (SNR) is −5 dB, and the number of arrays (M) is 7, is 

fed into the trained PSSNet. The results are depicted in Fig. 6. 

The PSS of the three actual EMRSs with directions of 120°, 150°, 

and 155° is shown in Fig. 7. As can be observed, PSSNet esti- 

mated the PSS well, even when the direction difference between 

the two sources is 5° or 2°. The spectral peak is a sharp “needle 

shape,” which is conducive to accurately obtaining the number 

and DoAs of the radiation sources so as to calculate the mixing 

matrix. 

Afterward, the separation matrix is estimated according to the 

mixing matrix and the loss function proposed in Section IV, and 

 

 
Fig. 7. Pseudospatial spectrum of three actual EMRSs. 

 

 
Fig. 8. Loss of separation matrix estimation. 

the source signals are recovered. Experiments based on samples 

from five simulated EMRS are carried out to demonstrate the 

performance of the proposed loss function and signal recovery. 

Fig. 8 shows the loss of the separation matrix estimation, which 

converges stably to 0 after 400 iterations, meaning that the sepa-

rate matrix is quickly estimated. The five recovered signals are 

shown in Fig. 9. The time-domain waveform of the recovered 

signals is similar to that of the source signals shown in Fig. 3. 

Moreover, the performance of the proposed separation method 

is inevitably affected by the SNR and M. The CC between the 

recovered signals and the source signals with different SNRs 

when M = 7 are shown in Fig. 10, which shows that the bigger 

the SNR, the bigger the CC. When the SNR is greater than 3 

dB, the CC for all EMRSs is greater than 0.8, which means that 

the proposed separation method can effectively separate the 

wideband signals as well as the narrowband signals. The separa-

tion performance for EMRS3 and EMRS4 is poor, which is 

caused by the strong correlation between them because they are 

the same type of EMRS, with a directional difference of only 2°. 

 

 
Fig. 9. The recovered signals of five simulated EMRSs. 

 

 
Fig. 10. Correlation coefficient with different SNRs when M = 7. 
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Fig. 11. Correlation coefficient under different numbers of arrays. 

 

The CC shown in Fig. 11 describes the separation perfor-

mance of the proposed separation method under different num-

bers of arrays. This shows that, in the underdetermined case rep-

resented by M = 4, when the SNR is greater than −10 dB, the 

CC is higher than 0.8. Meanwhile, the CC is higher than 0.9 

when the SNR is greater than −10 dB in both overdetermined 

and determined cases. The experiment verified that the proposed 

method could achieve EMRS separation under various cases. 

 

3. Comparative Experiment 

This section illustrates the innovation of the proposed separa-

tion method through comparative experiments. On the one hand, 

the proposed PSSNet was compared with the current popular 

FC-based network (FCNet) [18] and CNN-based network 

(ConNet) [19] for DoA estimation. Three networks were trained 

and tested on the same dataset, whose samples were simulated 

with an SNR of −5 dB. According to the test results under dif-

ferent numbers of arrays, the RMSE of DoA estimation and 

number-of-source estimation is shown in Table 1. The training 

and test times of the three networks under different numbers of 

arrays are listed in Table 2. 

As can be shown, all three neural networks correctly estimated 

the number of sources, but FCNet and ConNet training preset 

the number of sources as 7. The RMSE of the DoA estimation 

of PSSNet is less than 1°, which is smaller than the estimated 

results of FCNet and ConNet. The time cost of the three net-

works is independent of the number of arrays. FCNet requires  

 

Table 1. RMSE of DoA estimation and number-of-source estima-

tion 

Net-

work 

DoA (°) Number of sources

M  

= 6 

M  

= 5 

M  

= 4 

M 

= 6 

M 

= 5

M 

= 4

FCNet 1.381 1.505 1.988 0 0 0

ConNet 1.054 0.975 1.251 0 0 0

PSSNet 0.527 0.638 0.691 0 0 0

Table 2. Time cost of three networks under different M 

Net-

work 

Training time (s) Test time (s)

M 
= 6

M 
= 5

M  
= 4 

M  
= 6 

M 
= 5

M 
= 4

FCNet 427.3 430.1 430.5 185.5 186.7 186.8

ConNet 338.6 327.9 341.5 147.0 142.4 148.2

PSSNet 334.3 329.9 331.5 145.1 143.3 143.9

 

more training and testing time, while ConNet and PSSNet have 

similar time costs. PSSNet is better at estimating DoA, which 

reduced the RMSE of the DoA estimation of FCNet and Con-

Net by 61.9% and 43.4%, respectively. 

On the other hand, the proposed separation method is com-

pared with state-of-the-art FastICA [9] and cluster-based SCA 

methods [16]. Table 3 shows the CC and RMSE of three meth-

ods with different numbers of arrays when SNR = −5 dB. Table 

4 shows the running time of three methods with different num-

bers of arrays when SNR = −5 dB, where the running time of the 

proposed separation method includes the average training and 

test time of a sample. 

FastICA was used to validate (over)determined cases, and clus-

ter-based SCA was used to validate (under)determined cases. 

The proposed separation method had the largest CC, the smallest 

RMSE, and the least running time, which increased the average 

CC of FastICA and Cluster-based SCA by 9.14% and 12.88%, 

respectively, and reduced their running times by 27.65% and 

40.94%. Its performance is relatively stable and less affected by 

the number of arrays. 

 
Table 3. CC and RMSE of the three methods under different M 

Method 

Correlation coefficient RMSE

M 
= 6

M 
= 5

M  
= 4 

M  
= 6 

M 
= 5

M  
= 4

FastICA 0.90 0.85 - 2.02 4.79 -

Cluster-

based SCA

- 0.81 0.82 - 6.28 6.68

The pro-

posed 

method

0.96 0.95 0.89 1.17 2.02 2.67

 
Table 4. Running time (s) of three methods under different M 

Method 
Number of arrays

M = 6 M = 5 M = 4

FastICA 0.417 0.469 -

Cluster-based SCA - 0.545 0.515

The proposed method 0.322 0.319 0.307
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VI. CONCLUSION 

In this study, a separation method consisting of five steps is 

proposed to separate EMRSs of the same frequency. The pro-

posed PSSNet increased the accuracy of DoA estimation because 

of the fusion layer. The RMSE of the DoA estimation of PSS-

Net was less than 1°. The introduction of a new loss function for 

separation matrix estimation as the optimization criterion im-

proved performance in recovering source signals. When the SNR 

exceeded -10 dB, the CC was higher than 0.8 in underdeter-

mined cases and higher than 0.9 in overdetermined and deter-

mined cases. The proposed separation method reduced the run-

ning time, making it suitable for applications in electromagnetic 

environment monitoring systems that use array sampling to 

quickly identify EMRSs of the same frequency. 
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