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I. INTRODUCTION 

Recently, dual-polarized antennas have regained significant 

interest from antenna researchers with the aim of achieving ex-

tremely high isolation. This high isolation (more than 40 dB), if 

achieved, will greatly assist in the interference reduction between 

the transmitter and receiver, which enables in-band full-duplex 

(IBFD) technology where the spectral efficiency can be doubled [1]. 

Obtaining this required high isolation is challenging. While several 

unconventional or specialized techniques, such as wavetraps [2], 

couplers [3], auxiliary ports [4], and decoupling structures [5], 

have been proposed, the mainstream method is still the use of 

differential-fed schemes [6–10]. This is not a surprising trend 

since differential feeds provide a simple means to cancel out the 

coupling. The basic configuration of this antenna type, which 

could consist of either single or double differential feeds, is illustrated 

in Fig. 1. For the schematic in Fig. 1(a), using the differential-

fed scheme for Ports 2+ and 2-, named Port d, its S-parameters 

are calculated as follows [10]: 
 𝑆 = (𝑆 − 𝑆 − 𝑆 + 𝑆 )/2, (1a)

   𝑆 = (𝑆  − 𝑆 )/√2. (1b)
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Abstract 
 

A dual-polarized filtering Fabry–Perot antenna (FPA) with high selectivity and high isolation is proposed for in-band full-duplex (IBFD) 

applications. The proposed antenna utilizes a square patch as the feeding element, which is fed by a double differential-fed scheme for 

dual-polarized radiation with high isolation. The patch is loaded with a symmetrical cross-slot and four shorting pins for a broad passband 

filtering feature. To enhance broadside gain across a wide frequency range, the patch is incorporated with a partially reflecting surface 

(PRS), which is composed of two complementary cross-slot and patch arrays. Moreover, the frequency selectivity of PRS is exploited to 

improve the filtering characteristic. The double differential feeds are realized based on out-of-phase power dividers, which are combined 

with simple low-pass filters to further improve the out-of-band suppression. The final design was fabricated and measured. The measurement 

results show excellent results with a 10-dB return loss bandwidth of 21.5% (4.91–6.09 GHz), isolation of greater than 40 dB, peak gain of 

13.7 dBi, out-of-band suppression level of better than 27 dB, and a cross-polarization level of less than -27 dB. 
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To obtain an infinite isolation (𝑆 = 0), the antenna needs to be 

perfectly symmetrical across Ports 2+ and 2-, that is, 𝑆 =𝑆 . For the double differential-fed antenna shown in Fig. 1(b), 

the isolation among differential ports is calculated as follows: 
 

  𝑆 = (𝑆 − 𝑆 − 𝑆 + 𝑆 )/2. (2)
 

In this case, the antenna needs to be perfectly symmetrical 

across two planes: 𝑆 = 𝑆 , and 𝑆 = 𝑆 . As 

clearly seen in (1b) and (2), differential feeds and symmetry can 

be utilized together to achieve theoretically infinite isolation. 

Due to the fast-increasing requirements of wireless commu-

nication systems, multifunctional antennas have become more 

demanding. Filtering antennas [11], which realize both anten-

nas and filter functions in a single structure, have been consid-

ered a powerful solution for reducing the losses, size, and cost in 

a wireless communication system. Thus, it is expected that many 

differential-fed dual-polarized filtering antennas [12–16] will be 

proposed. For filtering purposes, various approaches have been 

applied, including using multilayer structures, slots, and parasitic 

elements. To increase the gain, filtering elements are commonly 

arrayed, such as [15, 16]. This method increases complexity in 

both the antenna and feeding configurations. 

This paper provides a new design for a differential-fed dual-

polarized filtering antenna with a significant improvement in 

performance, in terms of isolation, gain, and filtering characteristics, 

compared to the literature. The high gain is achieved with a 

simple structure of the Fabry–Perot antenna (FPA), which is 

also optimized to enhance filtering performance. For feeding, a 

cross-slot and four shorting pins are inserted into a square patch to 

not only broaden the bandwidth but also achieve the filtering 

feature. Although there have been some existing dual-polarized 

FPAs, such as [17–21], their performances in terms of isolation and 

gain filtering are quite limited. This will be discussed in Section III. 

II. ANTENNA DESIGN 

1. Antenna Configuration 

Fig. 2 shows an overview of the proposed FPA with detailed 

geometries of the feeding patch and the partial reflecting surface 

(PRS). The patch is built on the top side of "Sub. 1," with dimen-

sions of 70 mm × 70 mm, which is suspended on the ground 

(GND) at an airgap of Ha. It is loaded with a modified cross-

shaped slot and four shorting pins to achieve a broad passband 

filtering characteristic. The Fabry–Perot cavity is formed by the 

PRS suspended over the GND at a height of Hc. The PRS consists 

of 9 × 9 unit-cells printed on "Sub. 2." As shown in Fig. 2(c), 

each PRS unit cell is a complementary structure with a cross-slot 

on the bottom side and a plus-shaped patch on the top side, 

which allows broadband operation. Roger RT/Duroid 5880 sheets 

(εr = 2.2 and tanδ = 0.0009) are chosen for Sub. 1 and Sub. 2. 

The FPA is characterized by using the ANSYS Electronics 

Desktop for broadband, dual-polarization, high-isolation, high-

gain, and band-pass filtering at a center frequency of 5.5 GHz. In 

the simulations, the double differential feed is modeled using four 

single-ended ports (P1+, P1-, P2+, and P2-) with a charac-

teristic impedance of 50-Ω (Fig. 2(a)). Its optimized parameters 

are as follows: df = 5, dv = 0.51, s = 0.2, Ls1 = 5.4, Ls2 = 7, Ls3 = 

1.75, dp = 17.4, Wp = 26, u1 = 12, v1 = 7, u2 = 10, v2 = 4, P = 13, 

h1 = h2 = 0.7874, Ha = 2.4, Hc = 28 (unit in mm). 
 

2. Properties of the PRS Structure 

The bandwidth of the FPA is determined by the reflection 

phase of the PRS, while the directivity increment is related to 

the reflection magnitude of the PRS [20]. Accordingly, a com-

plementary structure with cross-slots and plus-shaped patches is 

chosen for the PRS to allow broadband and high directivity. To 

illustrate this feature, the PRS unit cell is simulated with periodic 

boundary condition (PBC) and Floquet ports, as shown in Fig. 3(a). 

Its reflection properties are given in Fig. 3(b), showing a positive-

gradient reflection phase in the band ranging from 5.2 GHz to 

 
(a)                             (b) 

Fig. 1. Schematic of the dual-polarized IBFD antenna using (a) single 

and (b) double differential-fed schemes. 

 
(a) 

 
(b)                               (c) 

Fig. 2. Geometry of the proposed antenna: (a) side-view, (b) top-view 

of the feed antenna, and (c) PRS unit-cell. 
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5.8 GHz. In this range, the resonance condition of the FPA [17, 

18, 20, 21] is satisfied, resulting in a gain improvement across a wide 

bandwidth. It is noted that since the resonance condition does 

not satisfy the range of 5.2–5.8 GHz, the PRS will contribute to 

the filtering performance, as will be shown in the next section. 
 

3. Filtering Mechanism 

To illustrate the working mechanism, we examine and compare 

the performances of the four configurations in Fig. 4. It is noted 

that Ants. 1–3 are just patches alone while the proposed design 

includes Ant. 3 and the optimized PRS. For the sake of comparison, 

Ants. 1–3 have the same parameters as the proposed antenna. 

The S-parameters of the differential feed are calculated as in (1a). 

As shown in Fig. 5(a), the conventional patch (Ant. 1) yields a 

narrow impedance bandwidth—i.e., 4.42–4.67 GHz (4.5%) for a 

- 10 dB reflection coefficient—with only one resonance. The 

patch with a cross-slot generates extra resonance in the high-

frequency region, that is, Ant. 2 achieves two resonances at 4.4 

GHz and 6.0 GHz. To further investigate the radiation mechanism 

of Ant. 2, the surface current distributions are simulated at the two 

resonances, as shown in Fig. 5(b). At the lower resonance frequency, 

the currents on the entire patch follow the fundamental TM10 mode 

of a conventional patch. At the higher resonance frequency, the 

dominant currents are on the cross-slot, which indicates that the 

extra resonance is caused by this slot. In Fig. 5(a), by the insertion 

of the four shorting pins (Ant. 3), the dominant TM10 mode 

resonance is shifted toward the higher frequency, that is, around 

5.2 GHz, while the slot-mode resonance hardly changed, that is, 

around 6 GHz. This is demonstrated by the current distributions 

of Ant. 3, as shown in Fig. 5(c). Since Ants. 2 and 3 have not 

been fully optimized, their impedance matchings are not very 

good. By adding the PRS structure, the impedance matching is 

improved; that is, the proposed antenna achieves a bandwidth of 

4.91–6.11 GHz (21.8%) for a -10 dB reflection coefficient. Due 

to the symmetric structure, the double differential-fed antennas 

theoretically achieve infinite isolation (see (2)); therefore, Sdd21 is 

not shown here. 
Fig. 6 shows the broadside realized gains for the different config-

urations. The conventional patch (Ant. 1) suffers a narrow gain 

bandwidth with a peak value of 9.4 dBi and does not yield any out-

of-band suppression. By adding cross-slot and shorting pins, the 

gain bandwidth is broadened in Ants. 2 and 3, which also exhibit 

out-of-band suppression, but their roll-off rates (RoRs) are not very 

sharp. In the proposed design, the presence of PRS enhances the 

broadside gain of approximately 5 dB and improves the filtering 

feature significantly; that is, its out-of-band suppression levels are 

48 dB and 14 dB for the lower and upper stopbands, respectively. 

 
(a)                            (b) 

Fig. 3. (a) PRS unit-cell modeling in the ANSYS Electronics Desktop 

and (b) its reflection characteristics.

 
Fig. 4. Design evolution of the proposed antenna. Ants. 1–3 are patches 

alone while the proposed design includes Ant. 3 and the wide-

band PRS. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. (a) Reflection coefficient of differential antennas. Current 

distributions on (b) Ant. 2, and (c) Ant. 3 at their resonant 

frequencies when the pair of P1+ and P1- are excited.
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To further evaluate the filtering performance, the RoRs of the 

different antennas are calculated at the lower and upper band 

edges using the following equation [22]: 
 

     𝑅𝑜𝑅 = | |   (dB/GHz), (3)
 

where 𝑓  denotes the frequency with 3-dB reduction in average 

realized gain and 𝑓  denotes the frequency where the average 

realized gain drops 20 dB. Ant. 2 yields an RoR of 8.3 dB/GHz 

and 8.0 dB/GHz at the lower and upper band edges, while the 

corresponding RoR values of Ant. 3 are 16.0 and 11.0 dB/GHz. 

The RoRs of the proposed design are 42.8 dB/GHz and 23.4 

dB/GHz, which are significantly higher than those of the other 

designs. 
 

4. Effects of the PRS Size 

The PRS size needs to be large enough to provide sufficient 

gain enhancement. However, if it is too large, there can be a local 

minimum in gain due to the lower reflection coefficient of the 

PRS at the center frequency (Fig. 3(b)). This is illustrated in Fig. 7 

(see the gain for 11 × 11-cell PRS). According to this result, 

the 9 × 9-cell configuration offers the smallest gain variation 

and the widest 3-dB gain bandwidth; therefore, it is chosen for 

the final design. 

III. REALIZATION AND MEASUREMENT 

1. Feeding Network 

The double differential feeds of the proposed FPA are realized 

based on an out-of-phase power divider [23], as illustrated in 

Fig. 8(a). Each differential feed consists of a Wilkinson power 

divider and a 180° phase shifter, which is compensated for by 

the Roger RO4003 substrate (εr = 3.38, tanδ = 0.0027, and 

thickness of 0.508 mm) and the center frequency of 5.5 GHz. 

To further improve the stopband in the high-frequency region, 

four simple low-pass filters (LPFs) with stepped impedance 

resonators [24] are added to the output microstrip lines. The 

positions of the LPFs should be optimized to ensure the symmetry 

of the structure. Due to the compact and simple configuration, 

the LPFs do not increase the complexity of the feeding network. 

The performances of the feeding network are shown in Fig. 8(b). 

It is observed that the feeding network yields nearly perfect differ-

ential signals at the outputs and good LPF features with the cut-off 

frequency at 6.0 GHz. The reflection coefficients (|S11| and |S22|) 

are < - 15 dB at 4.8–5.8 GHz. Within this frequency range, the 

divided powers at the outputs are nearly equal and phase differences 

are 180° ± 1.5°. 
 

2. Results 

For verification, the final FPA, including the feeding network, 

is fabricated and measured. The feeding network, patch, and 

PRS are fabricated using printed circuit board (PCB) technology. 

Plastic posts and screws are used to construct the final prototype, 

as shown in Fig. 9. The protype has an overall dimension of 120 

mm × 120 mm × 29.3 mm (1.96λmin × 1.96λmin × 0.48λmin), 

 
Fig. 6. Realized broadside gains of the different antenna design steps 

shown in Fig. 4. 

 
Fig. 7. Broadside gain of the proposed FPA with different PRS sizes.

 
(a) 

 
(b) 

Fig. 8. (a) Realization of differential-fed (unit in mm) and (b) their 

performances.
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where λmin is the free-space wavelength referring to the lowest 

operation frequency. 
Fig. 10(a) illustrates the simulated and measured S-parameters 

of the antenna prototype. A good agreement between the simu-

lation and measurement results is observed. The measurements 

show an overlapped bandwidth of 21.5% (4.91–6.09 GHz) for 

10-dB return loss, whereas the simulated value is 20.9% (4.87–

6.02 GHz). Also, across the impedance bandwidth, the measured 

isolation among two ports is better than 40 dB as compared 

with the simulated result of >45 dB. 
The realized gain of the antenna is shown in Fig. 10(b). 

Again, the measurements agree well with the simulation, and 

both indicate that the proposed antenna yields high broadside 

gains and high frequency selectivity for the two ports. The 

measurements result in a 3-dB gain bandwidth of 18% (5.11–

6.12 GHz), with a peak value of 13.7 dBi, whereas the simulated 

3-dB gain bandwidth is 20.5% (4.94–6.07 GHz), with a peak 

value of 13.9 dBi. Moreover, both simulation and measurement 

indicate that the antenna yields a good band-pass filter function; 

that is, its out-of-band suppression is ≥27 dB. Due to the limita-

tions of the chamber, the measured radiation efficiency (RE) is 

not available. Nevertheless, the simulated RE is better than 75% 

within the passband. Good agreement between the measured 

and the simulated gains also indicates an actual RE of around 

this value. 

Figs. 11 and 12 illustrate the normalized radiation patterns of 

the antenna prototype when ports 1 and 2 are excited, respectively. 

Both the measurement and the simulation indicate that the 

proposed FPA achieves excellent dual-polarized radiation. The 

measured cross-polarization levels are higher than the simulation 

values, which are attributed to realization tolerance, the effects of 

the tapers and racking in the far-field measurement setup, and 

the quality of the chamber. Nevertheless, the measurements result 

in a cross-polarization level <-27 dB, side-lobe level <-18 dB, 

and front-to-back ratio (F-B) >25 dB. 

 
Fig. 9. Fabricated prototype of the proposed antenna. 

 
(a) 

 
(b) 

Fig. 10. Simulation and measurement results of the antenna prototype: 

(a) S-parameters and (b) broadside realized gain. 

 
Fig. 11. Radiation patterns of the FPA prototype when the Port 1 is 

excited: (top) xz plane and yz plane at 5.2 GHz and (bottom) 

xz plane and yz plane at 5.8 GHz. 
 

 
Fig. 12. Radiation patterns of the FPA prototype when Port 2 is excit-

ed: (top) xz plane and yz plane at 5.2 GHz and (bottom) xz 

plane and yz plane at 5.8 GHz. 
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3. Comparison 

A comparison between the proposed design and the reference 

antennas is made in Table 1. Compared with previous differential-

fed dual-polarized filtering antenna arrays [15, 16], this work 

offers a simpler configuration, higher isolation, and a higher 

out-of-band suppression level. Relative to dual-polarized FPAs 

[17-19], the proposed antenna yields the advantages of a small 

size, wider bandwidth, and higher isolation, and especially, a 

passband filtering feature. Compared with the recent filtering 

FPA [21], thanks to the patch with slot and shorting pins and 

the filtering feeding network, the proposed FPA achieves a 

much better filtering characteristic, that is, a higher out-of-band 

suppression level, sharper RoR, and higher gain. 

 

IV. CONCLUSION 

A dual-polarized filtering antenna with high-gain and high-

frequency selectivity has been described. The proposed design 

takes advantage of a double differential-fed patch antenna with 

an etched cross-slot and is loaded with shorting pins to realize 

broadband operation and filtering features. To enhance the 

broadside gain and frequency selectivity, the patch is incorporated 

with the broadband PRS structure. Two out-of-phase power 

dividers are integrated with simple LPFs to realize double differ-

ential feeds and further improve suppression at high frequency. 

The final prototype with an overall size of 1.96λmin × 1.96λmin 

× 0.48λmin achieves a 10-dB return loss bandwidth of 21.5% 

(4.91–6.09 GHz), an isolation of ≥40 dB, a 3-dB gain band-

width of 5.11–6.12 GHz, a peak gain of 13.7 dBi, a cross-

polarization level of ≤-27 dB, and an out-of-band suppression 

level of ≥27 dB. These features make the proposed FPA a 

good candidate for IBFD applications as well as other wireless 

communication systems. 

This research is funded by the Vietnam National Founda-

tion for Science and Technology Development (NAFOSTED) 

under grant number 102.04-2021.06. 
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