3. M. F. Munir, A. Basit, W. Khan, A. Saleem, and A. Al-Salehi, "A comprehensive study of past, present, and future of spectrum sharing and information embedding techniques in joint wireless communication and radar systems,"
Wireless Communications and Mobile Computing, vol. 2022, article no. 9642849, 2022.
https://doi.org/10.1155/2022/9642849
4. M. O. Sultonova, "Development of wireless telecommunication systems with the use of technologies of cognitive radio," In:
Proceedings of 2016 International Conference on Information Science and Communications Technologies (ICISCT); Tashkent, Uzbekistan. 2016, pp 1–3.
https://doi.org/10.1109/ICISCT.2016.7777394
5. T. Rajora, L. Sejwal, and N. Tyagi, "Leading edge in the world of wireless communication: 5G,"
AIP Conference Proceedings, vol. 2481, no. 1, article no. 030005, 2022.
https://doi.org/10.1063/5.0105396
7. F. Centurelli, P. Monsurro, and A. Trifiletti, "A 10 GHz inductorless active SiGe HBT lowpass filter,"
International Journal of RF and Microwave Computer‐Aided Engineering, vol. 28, no. 9, article no. e21567, 2018.
https://doi.org/10.1002/mmce.21567
9. J. Zou, C. Liu, D. R. Trainor, J. Chen, J. E. Schutt-Aine, and P. L. Chapman, "Development of three-dimensional inductors using plastic deformation magnetic assembly (PDMA),"
IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1067–1075, 2003.
https://doi.org/10.1109/TMTT.2003.809674
10. X. Yu, W. Huang, M. Li, T. M. Comberiate, S. Gong, J. E. Schutt-Aine, and X. Li, "Ultra-small, high-frequency and substrate-immune microtube inductors transformed from 2D to 3D,"
Scientific Reports, vol. 5, no. 1, article no. 9661, 2015.
https://doi.org/10.1038/srep09661
11. J. W. Kim, C. K. Ryu, and Y. O. Han, "Development of SMD chip inductors for RF system applications,"
Convergence and Hybrid Information Technology. Heidelberg, Germany: Springer, 2012. p.602–610.
https://doi.org/10.1007/978-3-642-32692-9_76
12. C. Lin, T. Zhan, J. Wang, J. Li, Z. Liu, and X. Yi, "Investigations about Al and Cu-based planar spiral inductors on sapphire for GaN-based RF applications,"
Applied Sciences, vol. 11, no. 11, article no. 5164, 2021.
https://doi.org/10.3390/app11115164
13. H. Chen, X. Wang, Y. Gao, X. Shi, Z. Wang, N. Sun, and et al, "Integrated tunable magnetoelectric RF inductors,"
IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 3, pp. 951–963, 2020.
https://doi.org/10.1109/TMTT.2019.2957472
14. C. Pacurar, V. Topa, A. Giurgiuman, C. Munteanu, C. Constantinescu, M. Gliga, and S. Andreica, "High frequency analysis and optimization of planar spiral inductors used in microelectronic circuits,"
Electronics, vol. 10, no. 23, article no. 2897, 2021.
https://doi.org/10.3390/electronics10232897
15. F. B. Torfian Hoveizavi, N. Abdul Rhaffor, S. Sal Hamid, K. A. Mohamed Zain, S. K. Kunhi Mohd, M. T. Mustaffa, and A. Abd Manaf, "Fabrication and characterization of Ferrofluidic-based wire-wound and wire-bonded type inductor for continuous RF tunable inductor,"
Applied Sciences, vol. 10, no. 11, article no. 3776, 2020.
https://doi.org/10.3390/app10113776
16. J. I. Lee, H. Kim, J. L. Kim, A. S. Pradhan, M. C. Kim, I. Chang, and et al, "Thermoluminescence of chip inductors and resistors in new generation mobile phones for retrospective accident dosimetry,"
Radiation Measurements, vol. 105, pp. 26–32, 2017.
https://doi.org/10.1016/j.radmeas.2017.08.007
17. M. Zemanek, R. Pribyl, J. Kelar, M. Pazderka, P. Stastny, J. Kudelcik, M. Trunec, and M. Cernak, "Electrical properties of alumina-based ceramic barrier layers for dielectric barrier discharge,"
Plasma Sources Science and Technology, vol. 28, no. 7, article no. 075001, 2019.
https://doi.org/10.1088/1361-6595/ab28fa
18. C. R. Sullivan, W. Li, S. Prabhakaran, and S. Lu, "Design and fabrication of low-loss toroidal air-core inductors," In:
Proceedings of 2007 IEEE Power Electronics Specialists Conference; Orlando, FL, USA. 2007, pp 1754–1759.
https://doi.org/10.1109/PESC.2007.4342265
19. B. Piernas, K. Nishikawa, K. Kamogawa, T. Nakagawa, and K. Araki, "High-Q factor three-dimensional Inductors,"
IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 8, pp. 1942–1949, 2002.
https://doi.org/10.1109/TMTT.2002.801342
20. International Electrotechnical Commission, High frequency inductive components - Electrical characteristics and measuring methods - Part 1: Nanohenry range chip inductor, In: IEC 62024–1:2024; 2024.
21. C. Liu, X. Chen, G. Xiu, L. Xiong, and L. Yang, "High frequency inductor proximity loss calculation with 3D finite element analysis considering non-sinusoidal current distortion,"
Energy Reports, vol. 7, pp. 267–275, 2021.
https://doi.org/10.1016/j.egyr.2021.08.047
22. J. W. Kim, M. H. Jung, N. K. Park, and E. J. Yun, "Microfabrication of solenoid-type RF SMD chip inductors with an Al
2O
3 core,"
Current Applied Physics, vol. 8, no. 5, pp. 631–636, 2008.
https://doi.org/10.1016/j.cap.2007.11.005
23. J. Vanpaemel, A. M. Abd-Elnaiem, S. De Gendt, and P. M. Vereecken, "The formation mechanism of 3D porous anodized aluminum oxide templates from an aluminum film with copper impurities,"
The Journal of Physical Chemistry C, vol. 119, no. 4, pp. 2105–2112, 2015.
https://doi.org/10.1021/jp508142m
24. M. A. Heine and M. J. Pryor, "The distribution of A-C resistance in oxide films on aluminum,"
Journal of the Electrochemical Society, vol. 110, no. 12, article no. 1205, 1963.
https://doi.org/10.1149/1.2425625
25. H. T. Le, I. Mizushima, Y. Nour, P. T. Tang, A. Knott, Z. Ouyang, F. Jensen, and A. Han, "Fabrication of 3D air-core MEMS inductors for very-high-frequency power conversions,"
Microsystems & Nanoengineering, vol. 4, article no. 17082, 2018.
https://doi.org/10.1038/micronano.2017.82