1. K. Janeczek, M. Jakubowska, G. Koziol, A. Mlozniak, and A. Arazna, "Investigation of ultra-high-frequency antennas printed with polymer pastes on flexible substrates,"
IET Microwaves, Antennas & Propagation, vol. 6, no. 5, pp. 549–554, 2012.
https://doi.org/10.1049/iet-map.2011.0351
2. Z. Li, R. Zhang, Y. Liu, T. Le, and C. P. Wong, "Highly conductive, flexible, bio-compatible poly-urethane based isotropic conductive adhesives for flexible electronics," In:
Proceedings of 2012 IEEE 62nd Electronic Components and Technology Conference; San Diego, CA, USA. 2012, pp 406–411.
https://doi.org/10.1109/ECTC.2012.6248862
3. R. Singh, E. Singh, and H. S. Nalwa, "Inkjet printed nano-material based flexible radio frequency identification (RFID) tag sensors for the internet of nano things,"
RSC Advances, vol. 7, pp. 48597–48630, 2017.
https://doi.org/10.1039/C7RA07191D
4. H. Li, S. Sun, B. Wang, and F. Wu, "Design of compact single-layer textile MIMO antenna for wearable applications,"
IEEE Transactions on Antennas and Propagation, vol. 66, no. 6, pp. 3136–3141, 2018.
https://doi.org/10.1109/TAP.2018.2811844
5. J. Zhong, C. W. Lee, D. Papantonis, A. Kiourti, and J. L. Volakis, "Body-worn 30: 1 bandwidth tightly coupled dipole array on conductive textiles,"
IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 5, pp. 723–726, 2018.
https://doi.org/10.1109/LAWP.2018.2803684
6. S. Azoubel, S. Shemesh, and S. Magdassi, "Flexible electro-luminescent device with inkjet-printed carbon nanotube electrodes,"
Nanotechnology, vol. 23, no. 34, article no. 344003, 2012.
https://doi.org/10.1088/0957-4484/23/34/344003
7. M. Rizwan, M. W. A. Khan, H. He, J. Virkki, L. Sydanheimo, and L. Ukkonen, "Flexible and stretchable 3D printed passive UHF RFID tag,"
Electronics Letters, vol. 53, no. 15, pp. 1054–1056, 2017.
https://doi.org/10.1049/el.2017.0168
8. T. Leng, X. Huang, K. Chang, J. Chen, M. A. Abdalla, and Z. Hu, "Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications,"
IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1565–1568, 2016.
https://doi.org/10.1109/LAWP.2016.2518746
9. X. Chen, X. Liu, S. Li, W. Wang, D. Wei, Y. Wu, and Z. Liu, "Tunable wideband slot antennas based on printable graphene inks,"
Nanoscale, vol. 12, no. 20, pp. 10949–10955, 2020.
https://doi.org/10.1039/D0NR00507J
10. A. T. Castro and S. K. Sharma, "inkjet-printed wideband circularly polarized microstrip patch array antenna on a PET film flexible substrate material,"
IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 1, pp. 176–179, 2018.
https://doi.org/10.1109/LAWP.2017.2779440
12. W. T. Li, Y. Q. Hei, P. M. Grubb, X. W. Shi, and R. T. Chen, "Inkjet printing of wideband stacked microstrip patch array antenna on ultrathin flexible substrates,"
IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 9, pp. 1695–1701, 2018.
https://doi.org/10.1109/TCPMT.2018.2848459
13. J. V. Voutilainen, T. Happonen, J. Hakkinen, and T. Fabritius, "All silk-screen printed polymer-based remotely readable temperature sensor,"
IEEE Sensors Journal, vol. 15, no. 2, pp. 723–733, 2015.
https://doi.org/10.1109/JSEN.2014.2350077
14. S. C. Del Barrio, T. Holmgaard, M. Christensen, A. Morris, and G. F. Pedersen, "Screen-printed silver-ink antennas for frequency-reconfigurable architectures in LTE phones,"
Electronics Letters, vol. 50, no. 23, pp. 1665–1667, 2014.
https://doi.org/10.1049/el.2014.3237
15. I. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. 2nd ed. New York, NY: Springer, 2015.
16. H. Lipson and M. Kurman, Fabricated: The New World of 3D Printing. Hoboken, NJ: John Wiley & Sons, 2013.
17. M. Kong, G. Shin, S. H. Lee, and I. J. Yoon, "Investigation of 3D printed electrically small folded spherical meander wire antenna,"
Journal of Electromagnetic Engineering and Science, vol. 17, no. 4, pp. 228–232, 2017.
https://doi.org/10.26866/jees.2017.17.4.228
18. J. M. Lin, W. N. Chen, C. Y. Lin, C. F. Lin, and J. C. Chang, "A novel highly electrically conductive silver paste," In:
Proceedings of 2016 International Conference on Electronics Packaging (ICEP); Hokkaido, Japan. 2016, pp 615–618.
https://doi.org/10.1109/ICEP.2016.7486902
19. S. Datta, K. Keller, D. L. Schulz, and D. C. Webster, "Conductive adhesives from low-VOC silver inks for advanced microelectronics applications,"
IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 1, pp. 69–75, 2011.
https://doi.org/10.1109/TCPMT.2010.2101390
20. B. S. Cook and A. Shamim, "Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate,"
IEEE Transactions on Antennas and Propagation, vol. 60, no. 9, pp. 4148–4156, 2012.
https://doi.org/10.1109/TAP.2012.2207079
21. A. Blayo and B. Pineaux, "Printing processes and their potential for RFID printing," In:
Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services: Usages and Technologies; Grenoble, France. 2005, pp 27–30.
https://doi.org/10.1145/1107548.1107559
22. D. Godlinski, R. Zichner, V. Zollmer, and R. R. Baumann, "Printing technologies for the manufacturing of passive microwave components: antennas,"
IET Microwaves, Antennas & Propagation, vol. 11, no. 14, pp. 2010–2015, 2017.
https://doi.org/10.1049/iet-map.2017.0042
23. T. Bjorninen, S. Merilampi, L. Ukkonen, P. Ruuskanen, and L. Sydanheimo, "Performance comparison of silver ink and copper conductors for microwave applications,"
IET Microwaves, Antennas & Propagation, vol. 4, no. 9, pp. 1224–1231, 2010.
https://doi.org/10.1049/iet-map.2009.0241
25. A. Lamminen, K. Arapov, G. de With, S. Haque, H. G. Sandberg, H. Friedrich et al., "Graphene-flakes printed wideband elliptical dipole antenna for low-cost wireless communications applications,"
IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1883–1886, 2017.
https://doi.org/10.1109/LAWP.2017.2684907
26. M. Rizwan, M. W. A. Khan, L. Sydanheimo, J. Virkki, and L. Ukkonen, "Flexible and stretchable brush-painted wearable antenna on a three-dimensional (3-D) printed substrate,"
IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 3108–3112, 2017.
https://doi.org/10.1109/LAWP.2017.2763743
27. S. Amendola, A. Palombi, and G. Marrocco, "Inkjet printing of epidermal RFID antennas by self-sintering conductive ink,"
IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1561–1569, 2018.
https://doi.org/10.1109/TMTT.2017.2767594
28. J. Siden, M. K. Fein, A. Koptyug, and H. E. Nilsson, "Printed antennas with variable conductive ink layer thickness,"
IET Microwaves, Antennas & Propagation, vol. 1, no. 2, pp. 401–407, 2007.
https://doi.org/10.1049/iet-map:20060021
29. A. Shastri, B. Sanz-Izquierdo, and S. Gao, "Manufacturing considerations for the development of reconfigurable antennas using inexpensive inkjet printing,"
IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 6, pp. 1021–1028, 2022.
https://doi.org/10.1109/TCPMT.2022.3178516
30. A. Madni, S. Zakir, R. M. H. Bilal, and W. T. Khan, "A compact inkjet-printed wide-band antenna for X/Ku/K/Ka-band and 5G applications," In:
Proceedings of 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI); Denver, CO, USA. 2022, pp 721–722.
https://doi.org/10.1109/APS/USNC-URSI47032.2022.9886823
31. M. Mirzaee and Y. Kim, "On the far-field characteristics of a 3D-printed antenna using wood-based PLA and conductive silver nanoparticle ink," In:
Proceedings of 2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM); Boulder, CO, USA. 2022, pp 76–77.
https://doi.org/10.23919/USNC-URSINRSM57467.2022.9881405
32. K. E. Kedze, H. Wang, and I. Park, "Compact broadband omnidirectional radiation pattern printed dipole antenna incorporated with split-ring resonators,"
IEEE Access, vol. 6, pp. 49537–49545, 2018.
https://doi.org/10.1109/ACCESS.2018.2868989
33. K. E. Park and I. Kedzeand, "Silver nanoflake printed flexible composite broadband dipole antenna," In:
Proceedings of 2019 International Conference on Electronics, Information, and Communication (ICEIC); Auckland, New Zealand. 2019, pp 1–3.
https://doi.org/10.23919/ELINFOCOM.2019.8706379
34. K. E. Kedze, H. Wang, and I. Park, "Effects of split position on the performance of a compact broadband printed dipole antenna with split-ring resonators,"
Journal of Electromagnetic Engineering and Science, vol. 19, no. 2, pp. 115–121, 2019.
https://doi.org/10.26866/jees.2019.19.2.115
35. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. Hoboken, NJ: John Wiley & Sons, 2012.