1. Z. J. Wang, M. A. Ohliger, P. E. Larson, J. W. Gordon, R. A. Bok et al., "Hyperpolarized
13C MRI: state of the art and future directions,"
Radiology, vol. 291, no. 2, pp. 273–284, 2019.
https://doi.org/10.1148/radiol.2019182391
2. S. B. Peter and V. R. Nandhan, "31-Phosphorus magnetic resonance spectroscopy in evaluation of glioma and metastases in 3T MRI,"
Indian Journal of Radiology and Imaging, vol. 31, no. 4, pp. 873–881, 2021.
https://doi.org/10.1055/s-0041-1741090
3. T. Henzler, S. Konstandin, G. Schmid-Bindert, P. Apfaltrer, S. Haneder, F. Wenz et al., "Imaging of tumor viability in lung cancer: initial results using
23Na-MRI,"
RöFo, vol. 184, no. 4, pp. 340–344, 2012.
https://doi.org/10.1055/s-0031-1299277
4. R. Forner, K. Nam, K. J. de Koning, T. van der Velden, W. van der Kemp, A. Raaijmakers, and D. W. Klomp, "RF coil setup for
31P MRSI in tongue cancer in vivo at 7 T,"
Frontiers in Neurology, vol. 12, article no. 695202, 2021.
https://doi.org/10.3389/fneur.2021.695202
6. J. Dai, M. Gosselink, T. A. van der Velden, E. F. Meliado, A. J. E. Raaijmakers, and D. W. J. Klomp, "An RF coil design to enable quintuple nuclear whole-brain MRI,"
Magnetic Resonance in Medicine, vol. 89, no. 5, pp. 2131–2141, 2023.
https://doi.org/10.1002/mrm.29577
7. C. Ianniello, G. Madelin, L. Moy, and R. Brown, "A dual-tuned multichannel bilateral RF coil for
1H/
23Na breast MRI at 7 T,"
Magnetic Resonance in Medicine, vol. 82, no. 4, pp. 1566–1575, 2019.
https://doi.org/10.1002/mrm.27829
8. D. O. Brunner, L. Furrer, M. Weiger, W. Baumberger, T. Schmid, J. Reber et al., "Symmetrically biased T/R switches for NMR and MRI with microsecond dead time,"
Journal of Magnetic Resonance, vol. 263, pp. 147–155, 2016.
https://doi.org/10.1016/j.jmr.2015.12.016
9. B. Thapa, J. Kaggie, N. Sapkota, D. Frank, and E. K. Jeong, "Design and development of a general-purpose transmit/receive (T/R) switch for 3T MRI, compatible for a linear, quadrature and double-tuned RF coil,"
Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, vol. 46, no. 2, pp. 56–65, 2016.
https://doi.org/10.1002/cmr.b.21321
10. P. K. Grannell, M. J. Orchard, P. Mansfield, A. N. Garroway, and D. C. Stalker, "A FET analogue switch for pulsed NMR receivers,"
Journal of Physics E: Scientific Instruments, vol. 6, no. 12, article no. 1202, 1973.
https://doi.org/10.1088/0022-3735/6/12/020
11. J. Y. Lu, T. Grafendorfer, T. Zhang, S. Vasanawala, F. Robb, J. M. Pauly, and G. C. Scott, "Depletion-mode GaN HEMT Q-spoil switches for MRI coils,"
IEEE Transactions on Medical Imaging, vol. 35, no. 12, pp. 2558–2567, 2016.
https://doi.org/10.1109/TMI.2016.2586053
12. M. Twieg, M. D. Rooij, and M. A. Griswold, "Enhancement mode GaN on silicon (eGaN FETs) for coil detuning," In: Proceedings of the Joint Annual Meeting ISMRM–ESMRMB; Milan, Italy. 2014.
13. M. Fuentes, E. Weber, S. Wilson, B. Li, and S. Crozier, "Micro-electromechanical systems (MEMS) based RF-switches in MRI: a performance study," In: Proceedings of the 18th Annual Meeting of ISMRM; Stockholm, Sweden. 2010.
14. S. B. Bulumulla, K. J. Park, E. Fiveland, J. Iannotti, and F. Robb, "MEMS switch integrated radio frequency coils and arrays for magnetic resonance imaging,"
Review of Scientific Instruments, vol. 88, no. 2, article no. 025003, 2017.
https://doi.org/10.1063/1.4975181
15. A. Maunder, M. Rao, F. Robb, and J. Wild, "RF coil design for multinuclear lung MRI of 19F fluorinated gases and 1H using MEMS," In: Proceedings of the 24th Annual Meeting of ISMRM; Singapore. 2016..
16. A. Maunder, M. Rao, F. Robb, and J. M. Wild, "Comparison of MEMS switches and PIN diodes for switched dual tuned RF coils,"
Magnetic Resonance in Medicine, vol. 80, no. 4, pp. 1746–1753, 2018.
https://doi.org/10.1002/mrm.27156
17. A. Abuelhaija, G. Saleh, T. Baldawi, and S. Salama, "Symmetrical and asymmetrical microstripline-based transmit/receive switches for 7-Tesla magnetic resonance imaging,"
International Journal of Circuit Theory and Applications, vol. 49, no. 7, pp. 2082–2093, 2021.
https://doi.org/10.1002/cta.3013
18. G. Saleh and A. Abuelhaija, "Dual tuned switch for dual resonance 1H/13C MRI coil," In:
Proceedings of 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS); Toronto, Canada. 2021, pp 1–7.
https://doi.org/10.1109/IEMTRONICS52119.2021.9422627
19. A. Abuelhaija, G. Saleh, O. Nashwan, S. Issa, and S. Salama, "Multi- and dual-tuned microstripline-based transmit/receive switch for 7-Tesla magnetic resonance imaging,"
International Journal of Imaging Systems and Technology, vol. 32, no. 2, pp. 590–599, 2022.
https://doi.org/10.1002/ima.22634
20. A. Abuelhaija and G. Saleh, "Dual tuned 1H/31P quadrature microstripline-based transmit/receive switch for 7 Tesla magnetic resonance imaging,"
International Journal of Electrical & Computer Engineering, vol. 12, no. 3, pp. 2177–2183, 2022.
https://doi.org/10.11591/ijece.v12i3.pp2177-2183
21. A. Abuelhaija and G. Saleh, "A pi-shaped compact dual tuned H/23 Na microstripline-based switch for 7-Tesla MRI,"
International Journal on Communications Antenna and Propagation, vol. 11, no. 1, pp. 57–64, 2021.
https://doi.org/10.15866/irecap.v11i1.20302
22. A. Abuelhaija and G. Saleh, "Two-section branch-line hybrid couplers based broadband transmit/receive switch,"
International Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 3, pp. 2600–2607, 2023.
https://doi.org/10.11591/ijece.v13i3.pp2600-2607
23. A. Abuelhaija and G. Saleh, "Broadbands four-branch hybrid coupler-based T/R switch for 7-Tesla magnetic resonance imaging,"
International Journal on Communications Antenna and Propagation, vol. 12, no. 5, pp. 380–384, 2022.
https://doi.org/10.15866/irecap.v12i5.22449
24. H. J. Yoon and B. W. Min, "Two section wideband 90° hybrid coupler using parallel-coupled three-line,"
IEEE Microwave and Wireless Components Letters, vol. 27, no. 6, pp. 548–550, 2017.
https://doi.org/10.1109/LMWC.2017.2701304
25. A. Jain, R. P. Yadav, and S. V. Kulkarni, "Design and development of 2 kW, 3 dB hybrid coupler for the prototype ion cyclotron resonance frequency (ICRF) system,"
International Journal of Microwave and Wireless Technologies, vol. 11, no. 1, pp. 1–6, 2019.
https://doi.org/10.1017/S175907871800137X
26. S. M. H. Javadzadeh, S. M. S. Majedi, and F. Farzaneh, "Broadside coupler channels 1 to 10 GHz," Microwaves and RF, vol. 51, no. 1, pp. 68–77, 2012.
27. M. Leib, D. Mack, F. Thurow, and W. Menzel, "Design of a multilayer ultra-wideband directional coupler," In: Proceedings of the German Microwave Conference; Hamburg, Germany. 2018, pp 1–4.
28. D. N. A. Zaidel, S. K. A. Rahim, N. Seman, C. L. Chew, and N. H. Khamis, "A design of octagon-shaped 3-dB ultra wideband coupler using multilayer technology,"
Microwave and Optical Technology Letters, vol. 55, no. 1, pp. 127–130, 2013.
https://doi.org/10.1002/mop.27259
31. M. A. Abou-Khousa and A. A. Mustapha, "Wideband RF transmit-receive switch for multi-nuclei NMR spectrometers,"
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 904–908, 2022.
https://doi.org/10.1109/TCSII.2021.3121210
32. L. Yuan, Z. Wang, W. Wei, and X. Han, "High-frequency broadband RF transmit-receive switch for pulsed magnetic field NMR,"
IEEE Transactions on Instrumentation and Measurement, vol. 72, article no. 6004109, 2023.
https://doi.org/10.1109/TIM.2023.3267530
33. R. H. Caverly, "PIN diode-based transmit-receive switch for 7 T MRI," In:
Proceedings of 2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS); Austin, TX, USA. 2016, pp 100–102.
https://doi.org/10.1109/BIOWIRELESS.2016.7445574
34. Y. Ji, W. Hoffmann, M. Pham, A. E. Dunn, H. Han, C. Ozerdem et al., "High peak and high average radiofrequency power transmit/receive switch for thermal magnetic resonance,"
Magnetic Resonance in Medicine, vol. 80, no. 5, pp. 2246–2255, 2018.
https://doi.org/10.1002/mrm.27194