1. Y. Zhang, Y. Han, J. Wu, Y. Wang, J. Li, Q. Shi, X. Xu and C. S. Hsu, "Comprehensive composition, structure, and size characterization for thiophene compounds in petroleum using ultrahigh-resolution mass spectrometry and trapped ion mobility spectrometry,"
Analytical Chemistry, vol. 93, no. 12, pp. 5089–5097, 2021;
https://doi.org/10.1021/acs.analchem.0c04667.
2. D. H. Mast, H. W. Liao, E. V. Romanova and J. V. Sweedler, "Analysis of peptide stereochemistry in single cells by capillary electrophoresis–trapped ion mobility spectrometry mass spectrometry,"
Analytical Chemistry, vol. 93, no. 15, pp. 6205–6213, 2021;
https://doi.org/10.1021/acs.analchem.1c00445.
4. K. H. Dit Fouque, J. Moreno, J. D. Hegemann, S. Zirah, S. Rebuffat and F. Fernandez-Lima, "Identification of lasso peptide topologies using native nanoelectrospray ionization-trapped ion mobility spectrometry–mass spectrometry,"
Analytical Chemistry, vol. 90, no. 8, pp. 5139–5146, 2018;
https://doi.org/10.1021/acs.analchem.7b05230.
5. M. E. Ridgeway, C. Bleiholder, M. Mann and M. A. Park, "Trends in trapped ion mobility: mass spectrometry instrumentation,"
TrAC Trends in Analytical Chemistry, vol. 116, pp. 324–331, 2019;
https://doi.org/10.1016/j.trac.2019.03.030.
6. D. J. Wineland, C. Monroe, W. M. Itano, B. E. King, D. Leibfried, D. M. Meekhof, C. Myatt and C. Wood, "Experimental primer on the trapped ion quantum computer,"
Fortschritte der Physik: Progress of Physics, vol. 46, no. 4–5, pp. 363–390, 1998;
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C363::AID-PROP363%3E3.0.CO;2-4.
7. D. J. Wineland, M. Barrett, J. Britton, J. Chiaverini, B. DeMarco, W. M. Itano et al., "Quantum information processing with trapped ions,"
Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 361, no. 1808, pp. 1349–1361, 2003;
https://doi.org/10.1098/rsta.2003.1205.
8. C. D. Bruzewicz, J. Chiaverini, R. McConnell and J. M. Sage, "Trapped-ion quantum computing: progress and challenges,"
Applied Physics Reviews, vol. 6, no. 2, article no. 021314, 2019;
https://doi.org/10.1063/1.5088164.
9. J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman et al., "Demonstration of the trappedion quantum CCD computer architecture,"
Nature, vol. 592, no. 7853, pp. 209–213, 2021;
https://doi.org/10.1038/s41586-021-03318-4.
10. R. Weinstock, "On a fallacious proof of Earnshaw’s theorem,"
American Journal of Physics, vol. 44, no. 4, pp. 392–393, 1976;
https://doi.org/10.1119/1.10449.
13. C. J. Foot, Atomic Physics. Oxford, UK: Oxford University Press, 2004.
15. L. S. Brown and G. Gabrielse, "Geonium theory: physics of a single electron or ion in a Penning trap,"
Reviews of Modern Physics, vol. 58, no. 1, article no. 233, 1986;
https://doi.org/10.1103/RevModPhys.58.233.
17. M. D’Onofrio, Y. Xie, A. J. Rasmusson, E. Wolanski, J. Cui and P. Richerme, "Radial two-dimensional ion crystals in a linear Paul trap,"
Physical Review Letters, vol. 127, no. 2, article no. 020503, 2021;
https://doi.org/10.1103/PhysRevLett.127.020503.
18. L. Dania, D. S. Bykov, M. Knoll, P. Mestres and T. E. Northup, "Optical and electrical feedback cooling of a silica nanoparticle levitated in a Paul trap,"
Physical Review Research, vol. 3, no. 1, article no. 013018, 2021;
https://doi.org/10.1103/PhysRevResearch.3.013018.
20. M. Niemann, T. Meiners, J. Mielke, M. J. Borchert, J. M. Cornejo, S. Ulmer and C. Ospelkaus, "Cryogenic 9Be+ Penning trap for precision measurements with (anti-) protons,"
Measurement Science and Technology, vol. 31, no. 3, article no. 035003, 2019;
https://doi.org/10.1088/1361-6501/ab5722.
21. J. S. Murray and P. Politzer, "Molecular electrostatic potentials and noncovalent interactions,"
Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 7, no. 6, article no. e1326, 2017;
https://doi.org/10.1002/wcms.1326.
22. P. Politzer and J. S. Murray, "Electrostatics and polarization in σ-and π-hole noncovalent interactions: an overview,"
ChemPhysChem, vol. 21, no. 7, pp. 579–588, 2020;
https://doi.org/10.1002/cphc.201900968.
23. M. Schwartz, Principles of Electrodynamics. Newburyport, MA: Denver Publications, 2012.
25. H. S. Cohl, A. R. P. Rau, J. E. Tohline, D. A. Browne, J. E. Cazes and E. I. Barnes, "Useful alternative to the multipole expansion of 1/r potentials,"
Physical Review A, vol. 64, no. 5, article no. 052509, 2001;
https://doi.org/10.1103/PhysRevA.64.052509.
26. J. D. Jackson and R. F. Fox, "Classical electrodynamics,"
American Journal of Physics, vol. 67, no. 9, pp. 841–842, 1999;
https://doi.org/10.1119/1.19136.
27. L. D. Landau and E. M. Lifshits, Mechanics. Oxford, UK: Pergamon Press, 1960.
28. H. Goldstein, Classical Mechanics. San Francisco, CA: Addison-Wesley, 2002.
30. J. Em-Udom and N. Pisutha-Arnond, "Investigation of viscoelastic-creep and mechanical-hysteresis behaviors of hydrostatically stressed crystal using the phase field crystal method,"
Advances in Mathematical Physics, vol. 2020, article no. 2821402, 2020;
https://doi.org/10.1155/2020/2821402.
31. J. Em-Udom and N. Pisutha-Arnond, "Prediction of mechanical-hysteresis behavior and complex moduli using the phase field crystal method with modified pressure controlled dynamic equation,"
Materials Research Express, vol. 7, no. 1, article no. 015326, 2020;
https://doi.org/10.1088/2053-1591/ab611f.
32. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems. Heidelberg, Germany: Springer, 2006.
33. S. H. Strogatz, Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering. Boca Raton, FL: CRC Press, 2018.
34. S. Hassani, Mathematical Methods: For Students of Physics and Related Fields. 2nd ed. New York, NY: Springer, 2009.
35. H. Wang, Mathematics for Physicists. Singapore: World Scientific Publishing, 2017.