
189 

 
 

I. INTRODUCTION 

The electromagnetic theory states that the scattering of the 

wave from a dielectric cylinder has both non-radiative guided 

modes and radiative leaky modes with discrete eigenvector solu-

tions [1]. A leaky wave radiates along an interface, perpetually 

attenuating its energy by propagation [2, 3]. Leaky-wave modes 

in optical communication also refer to natural optical modes with 

propagating waves outside the structure that continuously lose 

energy through radiation [4]. Wave leakage from waveguide 

structures depends on many factors, such as the material filling 

the structure, physical geometry, guided mode, and operating 

frequency. A leaky wave radiating or leaking along an open wave-

guide structure allows for a frequency-dependent beam-scanning 

structure or leaky antenna structure, which allows energy to radi-

ate to remote areas [5]. Over the last few decades, the advantages 

of leaky-wave structures, such as their simple structure, easy fabri-

cation, high directivity, fairly narrow pattern bandwidth, cost effi-

ciency, and applicability from millimeter-wave frequency to opti-

cal frequency, have made them popular research subjects [6–28]. 
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Abstract 
 

An open dielectric waveguide includes both guided propagating modes within the waveguide and radiating and evanescent modes that 

propagate transversely outside the waveguide. In this study, the leaky-wave characteristics of a cylindrical dielectric rod are investigated 

using the coefficient matrix of the system of characteristic equations and Davidenko’s method. Using the coefficient matrix of the system 

of characteristic equations simplified the derivative(s) required to use Davidenko’s method. The results obtained for a 10-mm radius struc-

ture with a relative dielectric constant of 4 showed that a second antenna mode region existed for higher-order hybrid HE modes and 

lower-order transverse magnetic (TM) modes. However, it did not exist for transverse electric (TE) modes. Additionally, the hybrid HE 

modes had larger leaky-wave spectrum and antenna mode regions than both the TE and TM modes. This demonstrates that for antenna 

applications, hybrid HE modes supply a wider frequency spectrum. 
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In a leaky-wave open dielectric structure, the energy traveling 

along the interface leaks through the open waveguide structure, 

and the wave is then reflected in the interior dielectric. The leaked 

energy then radiates to some distance from the open waveguide 

structure. This phenomenon can be mathematically modeled by 

complex roots of the propagation constant or the eigenvalue 

equation. These complex solutions, called leaky modes, are not 

members of a complete set of orthogonal basis functions [29]. 

These complex solutions are nonspectral and also called improper 

modes because of their unphysical characteristics, in which the 

transverse components of the leaky mode increase exponentially 

while moving in the transverse direction. Although this is physi-

cally impossible, as it means violating the boundary condition at 

infinity, leaky waves can be physically measured and used in many 

electromagnetic applications. However, since these waves are 

mathematically improper, they can only exist within a constrained 

region in the form of a wedge, where the field remains finite [30–

32].  

Open dielectric guide structures are often used as leaky-wave 

antennas or waveguides in integrated circuits (ICs). In the optical 

communication spectrum, an open waveguide structure acts as a 

leaky antenna and waveguide at different frequency regions. This 

situation requires careful study to determine the operation region 

for practical applications. An open dielectric guiding structure 

used as an antenna operates in the high radiation efficiency fre-

quency region. In contrast, ICs work in the frequency region 

where the leakage effect must be eliminated as much as possible. 

As a result, the aim of a leakage investigation for antenna applica-

tions is slightly different than for ICs. In the first case, leakage is 

very desirable; in the second case, leakage is undesirable and 

should be suppressed [33]. The dispersion characteristics of the 

structure determine the boundaries of the two operation regions. 

In other words, frequency-dependent modal behavior classifies 

the relevant areas. In the literature, the propagation regions for 

open waveguide structures are divided into four subregions with 

decreasing frequency as follows [33–37]: 

1) The bound-mode region, where the mode propagates unat-

tenuated toward the propagation direction, and the solution 

for guidance along an open structure is spectral with a pure re-

al propagation constant (no attenuation constant). 

2) The surface-wave region, where the guided mode leaks power 

along the surface of the open structure while propagating to-

ward the propagation direction, and the solution is spectral 

and complex with a small attenuation constant. 

3) The antenna mode region, where the guided mode mostly 

leaks power into the space wave and surface wave, and the so-

lution is nonspectral and complex with little attenuation con-

stant. 

4) The reactive mode region, where the guided mode attenuates 

due to the reflection of energy back to the feed line, and the 

solution is nonspectral and complex, with a significant attenu-

ation constant. 

In the literature, leaky-wave modes for open waveguide struc-

tures with different geometries have been studied with the aid of 

various analytical methods: an open microstrip line of an arbitrary 

cross-section, with the integral equation technique correlatively 

with the method of moments [38]; a partial dielectric-loaded 

open waveguide by examining the behavior of a complex propaga-

tion constant [31]; a microstrip transmission line with a rigorous 

spectral-domain integral equation formulation [39]; a microstrip 

leaky-wave antenna with a full-wave spectral-domain integral 

equation method [34, 35]; the analytical expression of a simple 

cavity model [40]; and an open dielectric tube waveguide loaded 

with plasma using the analytical solution of the structure and the 

Muller’s complex root search algorithm [37]. The leaky-wave 

characteristics of a circular dielectric rod for transverse magnetic 

(TM) and transverse electric (TE) modes have been studied using 

the dispersion relations of the structure and Davidenko’s method 

[32, 36, 41]. The frequency spectrum for the structure has been 

divided into five subregions: guided mode, nonphysical mode, 

reactive mode, spectral gap, and antenna mode. Our study aimed 

to obtain the leaky-mode characteristics of hybrid electromagnetic 

(HEM) modes for a cylindrical dielectric rod with the aid of Da-

videnko’s method using approximations different from methods 

published in the literature. 

Due to the metallic boundary, the guided modes for TE (Ez = 

0), TM (Hz = 0), and TEM (Ez and Hz = 0) exist in metallic 

waveguides. An open waveguide structure has HEM modes as 

well as TM and TE modes due to the nonconducting boundary 

condition because all magnetic and electrical field components 

exist both inside and outside the boundary. The azimuthal varia-

tion for HEM modes is not zero (m ≥ 1) [42–44]. The HEM 

modes are designated as HE and EH modes, depending on the 

relative contributions of the longitudinal magnetic field and the 

longitudinal electric field [45–47]. In this study, the leaky-wave 

characteristics of the modes for a cylindrical dielectric rod were 

obtained using the coefficient matrix of the system of characteris-

tic equations of the structure and Davidenko’s method. Daviden-

ko’s method is a robust technique used to compute the complex 

roots of analytical functions. Davidenko’s method has been used 

for electromagnetic problems in various studies [32, 36, 41, 48–

54]. Kim et al. studied the leaky-wave characteristics of TM and 

TE modes for cylindrical dielectric rods using closed dispersion 

equations of the structure and Davidenko’s method [32, 36, 41]. 

Davidenko’s method requires the derivative of the closed disper-

sion equation with respect to the propagation constant. Because it 

is very difficult to differentiate an implicit function with interde-

pendent variables, Kim and his colleagues [32, 36, 41] numerical-

ly obtained the derivative of the equation with the aid of 

MATHEMATICA 4.0. Unlike the study of Kim et al. [32, 36, 
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41], in this study, the coefficient matrix of the system of charac-

teristic equations was used instead of the dispersion equation of 

the structure. Thus, the auxiliary software programs required for 

the derivative of the equation were removed, and a complete ana-

lytical solution set is presented. This approach allows analytical 

solutions of problems with more complex solution sets to be ob-

tained, such as the hybrid modes of a cylindrical dielectric rod and 

the electromagnetic wave in an anisotropic medium using Da-

videnko’s method. 

This study’s results for the TM and TE leaky modes were 

compared to results in the literature. The obtained leaky-wave 

characteristics of the HEM modes of the structure represent an 

original contribution to the literature. In the next two sections, 

first Davidenko’s method and then its application to a cylindrical 

dielectric rod are explained. The numerical results obtained for 

the TE, TM and HE modes and an interpretation of the results 

are given in Section IV. The paper ends with a conclusion. 

II. DAVIDENKO’S METHOD  

Davidenko’s Newton-based method is used to transform the 

n-dimension system of nonlinear algebraic equations (n ≥ 2) 

into a set of n first-order ordinary differential equations (ODEs) 

in a scalar dummy variable t [48, 51, 55]. The method is a robust 

technique used to compute the complex roots of transcendental 

equations. While Davidenko’s method is insensitive to initial 

guesses, traditional, complex root-finding algorithms, such as the 

Newton-Raphson and Muller’s methods, need to approximate an 

initial guess. Additionally, the Davidenko’s method has a higher 

speed of convergence than conventional methods. Davidenko’s 

method is utilized as a scalar dummy variable when transforming 

with the Jacobian matrix, a system of nonlinear algebraic equa-

tions, to a set of n first-order ODEs. As the dummy variable t 

approaches infinity, the dispersion equation steady-state solution 

for a large dummy variable yields the complex roots of the system 

[32, 36, 48, 53]. The formal expression of Davidenko’s method for 

the n-dimensional case of algebraic functions with n-unknowns, 𝒇 𝑥 = 𝟎, is presented in the following equation: 
                     = − 𝑱 𝒇 𝒙 , (1)
 

where dt corresponds to the increment of the dummy variable t 

and J is the Jacobian matrix for n nonlinear algebraic equations set 

in n unknowns. 

In this study, Davidenko’s method was used to compute the 

complex propagation constant corresponding to the complex 

roots of the coefficient matrix of the system of characteristic equa-

tions of the open cylindrical waveguide. The implicit dispersion 

equation of the structure is as follows: 
       𝐹 𝜔; 𝛾 = 0, (2)
 

where ω is the angular frequency and 𝛾 is the propagation con-

stant. The normalized propagation constant is defined as follows: �̅� = = = �̅� − 𝑗𝛼, (3)
 

where 𝛽, 𝛼, and 𝑘  are the phase constant, the attenuation 

constant, and the free space wavenumber, respectively. For Eq. (2), 

both the real and imaginary parts of the complex number have to 

be zero; therefore, we can write the real and imaginary parts of Eq. 

(2) as two nonlinear equations as follows: 
 

  Re 𝐹 𝜔; 𝛾 ≡ 𝐺 𝜔; 𝛼, 𝛽 = 0
        Im 𝐹 𝜔; 𝛾 ≡ 𝐻 𝜔; 𝛼, 𝛽 = 0. (4)

 

The dispersion equation, given in Eq. (2), is a complex analytic 

function on the complex propagation plane except at a finite 

number of points. Analytic functions are satisfied by Cauchy–

Riemann equations, and the expressions given above can be writ-

ten as follows: 
 

          𝐺 = 𝐻  𝐺 = −𝐻 , (5)
 

where the subscripts represent the corresponding derivatives. The 

Jacobian matrix of the equations system given in Eq. (4) can be 

obtained as follows: 
 𝑱 = 𝐺 𝐺𝐻 𝐻 , (6)
 

where, from Eq. (5), 
 𝑱 = 𝐺 𝐺−𝐺 𝐺 , (7)
 

and from the properties of the analytic function, 

 ≡ 𝐹 = 𝐺 + 𝑗𝐻 = 𝐺 − 𝑗𝐺 , (8)

 

where 𝐺 = Re 𝐹  𝐺 = −Im 𝐹 . (9)
 

The determinant of the Jacobian matrix can be obtained using 

Eqs. (7) and (9) as follows: 
 det 𝑱 = 𝐺 + 𝐺 = 𝐹 . (10)

 

From the obtained expression and using the definition of the 

inverse matrix, the inverse Jacobian matrix given in Eq. (1) for the 

dispersion equation can be achieved, as in Eq. (11) as follows: 

 

    𝑱 = 𝑱 adj 𝑱 = 𝐺 𝐺−𝐺 𝐺  
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= Re 𝐹 Im 𝐹−Im 𝐹 Re 𝐹 ,              
(11)

 

 

where adj corresponds to the adjugate of the matrix. The formal  

expression of Davidenko’s method is eventually obtained as the 

following expressions: 
   𝑑𝑑𝑡 𝛼𝛽 = −𝑱 𝐺𝐻  

= − 1𝐹 Re 𝐹 Im 𝐹−Im 𝐹 Re 𝐹 Re 𝐹Im 𝐹  
(12)

 

and 
 

   = − Re 𝐹 Re 𝐹 + Im 𝐹 Im 𝐹  (13)   = Im 𝐹 Re 𝐹 − Re 𝐹 Im 𝐹 . (14)
 

Consequently, the dispersion equation in the form of 𝐹 𝜔; 𝛾 =0 is transformed into a system of two coupled first-order ODEs 

by Davidenko’s method. The solution of the ODEs, given in Eqs. 

(13) and (14) for a steady-state solution for a large dummy varia-

ble, t gives us the complex roots of the propagation constant γ for 

a given frequency ω to the desired precision. The method evalu-

ates the function value 𝐹 and its derivative with respect to the 

propagation constant 𝐹  at each iteration. The derivative of an 

implicit function can be complicated depending on the complexi-

ty of the function and the interdependence of the variables. As 

mentioned, Kim and his colleagues [32, 36, 41] used an auxiliary 

program, MATHEMATICA 4.0, to calculate the derivative of 

the implicit dispersion equations for the TM and TE modes of a 

cylindrical dielectric rod. Unlike other studies, in the current study, 

an approach using the coefficient matrix of the system of charac-

teristic equations instead of the implicit dispersion relation was 

used to reduce the derivative complexity and eliminate auxiliary 

program dependency. Details of the approach are given in the 

next section.  

III. APPLICATION OF DAVIDENKO’S METHOD TO A  

CYLINDRICAL DIELECTRIC ROD 

Davidenko’s method is used to obtain complex roots of analyti-

cal functions, and the method requires the analytic expression of 

the function and its derivative. The derivative of an implicit func-

tion can be complicated depending on the complexity of the 

function and the interdependence of the variables, especially for 

structures with complex dispersion relationships. While utilizing 

an auxiliary mathematical program can be helpful, it can detract 

from the analytical solution and weaken the authority over the 

problem. Therefore, in this study, an approach was offered to facil-

itate the complex derivative expressions required by Davidenko’s 

method. The approach referenced the coefficient matrix of the 

system of characteristic equations of the structure, the prerequisite 

step to achieving the implicit dispersion equation. Characteristic 

equations were obtained from Maxwell’s equations using medium 

parameters, such as permittivity and permeability, boundary con-

ditions, and continuity conditions. The zeros of the determination 

of the coefficient matrix of the system of characteristic equations 

correspond to the zeros of the implicit dispersion equation. In this 

case, this can be expressed as follows, if M is the coefficient matrix 

of the system of characteristic equations: 
 𝐹 𝜔; 𝛾 = det 𝑴 = 0. (15)
 

As is known, Davidenko’s method requires the derivative of the 

function. In our approximation, it was obtained from the defini-

tion of the derivative of the determinant as follows: 
 ; = 𝐹 = 𝑴 = 𝑡𝑟 adj 𝑴 𝑴

, (16)

 

where tr stands for the trace of the matrix and adj is the adjugate 

of the matrix, as given in the previous section. From the definition 

of the inverse matrix, the derivative expression can be written as 

follows: 
 

            𝐹 = 𝑡𝑟 det 𝑴 𝑴 𝑴
. (17)

 

 

The derivative of a matrix with respect to a variable is obtained 

by the derivative of each element of the matrix with respect to the 

corresponding variable. Consequently, the Davidenko expressions 

are obtained as follows:  
 

 

  (18) 

 

  
(19)

 
 

 

Finding the derivative of the elements of the matrix is more 

straightforward than finding the derivative of the complex implic-

it expression of a structure, where many parameters depend on 

each other and the derivative variable. This is because the implicit 

expression is derived from the coefficient matrix of the system of 

characteristic equations by expressing the equations in terms of 

each other. The simplification of the derivative allows Daviden-
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ko’s method to be applied to more complex structures. Also, a 

complete set of analytical solutions can be obtained without the 

need for auxiliary software programs. In the literature, the TM 

and TE leaky modes of a structure have been determined by Da-

videnko’s method and implicit dispersion relations [32, 36, 41], 

and the implicit dispersion relationships for TE, TM, and HEM 

modes have been given in related studies. However, only the leaky 

modes for TE and TM modes are obtained using Davidenko’s 

method, and it has been proposed that hybrid leaky modes should 

be studied [32]. In our study, the TM and TE leaky modes of the 

structure were obtained by the presented approach based on the 

coefficient matrix of the system of characteristic equations and 

compared with the results in the literature. We also obtained and 

present the HEM leaky modes. The numerical results for the struc-

tures were obtained using MATLAB, the most widely used math-

ematical computational program. The guided modes, correspond-

ing to the real roots of the implicit dispersion equation or zeros of 

the determination of the coefficient matrix of the system of charac-

teristic equations for the pure real propagation constant (α = 0) 

were computed using the bisection method. Leaky-wave modes 

corresponding to the zeros of the determination of the coefficient 

matrix of the system of characteristic equations for the complex 

propagation constant were computed using Davidenko’s method. 

IV. NUMERICAL RESULTS AND DISCUSSION 

Determining the operation region of an open waveguide struc-

ture is essential for the performance of antenna and ICs because it 

can be used as both a leaky wave antenna and a guidance structure. 

While an antenna requires high leakage, sometimes special ef-

forts are necessary to suppress this to prevent spurious perfor-

mance and crosstalk [56, 57]. In this part of the study, the leaky 

wave modes of the cylindrical dielectric rod were investigated by 

Davidenko’s method using the approach given in the previous 

section, and the operation regions for the guided mode, nonphys-

ical mode, reactive mode, antenna mode, and spectral gap regions 

were computed. For an open waveguide structure, it is known 

that the guided mode is propagated unattenuated above the cutoff, 

and it leaks energy transversely into both space and surface waves 

in a narrow frequency region. Also, it is attenuated due to losing 

energy to the surface wave and reflecting it back to the feed line. 

The leaky wave region below the cutoff, where the mode is atten-

uated due to losing energy into both the space wave and surface 

wave, has been previously studied as the radiation region [30, 38]. 

The transition region between the leaky-wave region and the 

guided mode region, where the mode propagates without attenu-

ation, has also been studied [31, 34, 35, 39]. Lin et al. [34, 35] 

divided the radiation region into two subregions: the antenna 

mode region, where the greater part of the guided energy leaks 

transversely in the form of space and surface waves, and the reac-

tive mode region, where most of the energy is reflected back to 

the feed line. Additionally, Lin et al. [34, 35] described a transi-

tion point from the reactive mode region to the antenna mode 

region, in which the real part (phase constant) and imaginary part 

(attenuation constant) of the complex propagation constant are 

equal to each other. In subsequent studies, Kim et al. [36, 41] 

showed that there were multiple antenna mode regions for a cy-

lindrical dielectric rod, and Hirani et al. [37] presented these mul-

tiple antenna mode regions for a dielectric tube waveguide loaded 

with plasma. 

Considering these studies, the mode regions for a cylindrical 

dielectric rod were classified as shown in Table 1, with the nor-

malized propagation constant defined by Eq. (3). 

In this study, TE, TM, and hybrid HE leaky modes for a cy-

lindrical dielectric rod were investigated when the radius of the rod, 

a, was 10 mm and the relative dielectric constant, εr, was 4. We 

used the guided modes for the structure used by Kim [32] and the 

leaky TE and TM modes for a = 5 mm and εr = 5 [32, 36, 41]. In 

our study, the TE and TM leaky modes were obtained and com-

pared to the results available in the literature to check the accuracy 

of our results. As an original contribution, the hybrid HE modes 

were obtained using the coefficient matrix of the system of char-

acteristic equations of the structure and Davidenko’s method. 

The leaky-wave characteristics of the TE modes of the cylindrical 

dielectric rod when the radius of the dielectric rod was 10 mm 

and the relative dielectric constant was 4 are shown in Fig. 1. 

Table 2 gives the spectral ranges of the TE modes for the 

structure. 

The cutoff frequencies of the guided modes and their disper-

sion curves for the first three modes of TE0n (n = 1, 2, and 3) 

have been presented by Kim [32]. The guided mode cutoff values 

and characteristics of the guided modes obtained in the current 

study were the same as the values obtained in the relevant re-

search. The leaky-wave modes for the structure were also ob-

tained in the current study. The spectral ranges of the leaky-wave 

region were 1.52, 7.62, 15.13, and 22.97 GHz for TE01, TE02, 

TE03, and TE04, respectively. The nonphysical mode region, 

where the normalized phase constant exceeded unity and the 

normalized attenuation constant was greater than zero, was phys-

ically meaningless [31, 36]. In the nonphysical region, the nor-

malized phase constant and the normalized attenuation constant 

increased rapidly, while the frequency decreased. As the frequency  

Table 1. Mode region conditions 

Mode specifications
Normalized 

phase constant 

Normalized 

attenuation constant

Nonphysical mode �̅� 1 Large

Reactive mode �̅� 1 𝛼 1
Antenna mode 1 �̅�  𝛼
Spectral gap �̅� 1 Small

Guided mode �̅� 1 𝛼 = 0
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Table 2. Spectral ranges of the TE modes for the 10-mm radius 

cylindrical dielectric rod with a relative dielectric constant 

of 4 

Mode 
Nonphysical 

mode 

Leaky-wave region Guided mode 

cutoff Reactive mode Antenna mode 

TE01 0–5.11 NA 5.11–6.63 6.63

TE02 0–7.60 7.60–12.38 12.38–15.22 15.22

TE03 0–8.73 8.73–20.15 20.15–23.86 23.86

TE04 0–9.57 9.57–27.74 27.74–32.54 32.54

NA=not available. 

 
increased outside this region, the reactive mode region first existed 

for the higher-order TE0n (n ≥ 2) modes, and the antenna mode 

region existed at higher frequencies. The reactive mode region for 

the first order TE01 mode did not exist in the leaky-wave region, 

and the antenna mode region only existed for TE01. Also, the 

spectral gap did not exist in the TE modes, consistent with [32, 

36, 41]. The spectral ranges of the antenna modes were obtained 

from Table 2 as 1.52, 2.84, 3.71, and 4.8 GHz for TE01, TE02, 

TE03, and TE04, respectively. As seen from the results, the spec-

tral width of the antenna mode region increased as the mode or-

der increased. The normalized attenuation constant arrived at 

zero at the cutoff, and the guided modes existed above the cutoff 

frequency. In this region, the mode propagated unattenuated 

along the dielectric rod. The transition characteristic from the 

antenna mode region to the guided mode region for TE02 is given 

in the inset in Fig. 1(a).  

The leaky-wave characteristics of the TM modes of the cylin-

drical dielectric rod are given in Fig. 2, where the radius of the die-

lectric rod was 10 mm and the relative dielectric constant was 4. 

Table 3 gives the spectral ranges of the TM modes of the structure.  
While the cutoff frequencies for the TM guided modes were 

the same as the cutoff frequencies for the TE guided modes and 

their guided mode characteristics were similar, the leaky-wave char-

acteristics under the cutoff were substantially different. The spec-

tral ranges of the leaky-wave region were 4.32, 13.97, 22.63, and 

  

 

(a) 

(b) 

Fig. 1. Leaky-wave characteristics of the TE modes of the 10-mm 

radius cylindrical dielectric rod with a relative dielectric 

constant of 4. (a) Normalized phase constant and (b) nor-

malized attenuation constant. 

(a) 

(b) 

Fig. 2. Leaky-wave characteristics of the TM modes for the 10-

mm radius cylindrical dielectric rod with a relative dielec-

tric constant 4. (a) Normalized phase constant and (b) 

normalized attenuation constant. 

 

Table 3. Spectral ranges of the TM modes for the 10-mm radius cylindrical dielectric rod with a relative dielectric constant of 4 

Mode 
Nonphysical  

mode 

Leaky-wave region Guided mode 

cutoff Reactive mode 1st antenna mode Spectral gap 2nd antenna mode

TM01 0–2.31 NA NA NA 2.31–6.63 6.63

TM02 0–1.25 1.25–9.59 9.59–11.88 11.88–13.50 13.50–15.22 15.22

TM03 0–1.23 1.23–17.10 17.10–20.89 20.89–22.80 22.80–23.86 23.86

TM04 0–1.22 1.22–24.55 24.55–29.87 29.87–31.74 31.74–32.47 32.47

NA=not available. 
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31.25 GHz for TM01, TM02, TM03, and TM04, respectively. The 

higher-order TM0n modes (n ≥ 2) divided the leaky-wave region 

into four subregions: reactive mode, 1st antenna mode, spectral 

gap, and 2nd antenna mode. In addition, the nonphysical mode 

region was observed in the narrow spectrum for the TM modes 

than nonphysical mode region of TE modes. The TM01 mode 

only had one antenna mode distinct from the higher-order modes 

because the normalized phase constant value from the reactive 

mode region to the guided mode region was always greater than 

the normalized attenuation constant. For the higher-order modes 

(n ≥ 2), the reactive mode region first existed above the non-

physical mode region. At higher frequencies, this was the 1st an-

tenna region, where the normalized attenuation constant was 

smaller than the normalized phase constant. As the frequency 

increased, there was a physically meaningless spectral gap that had 

the same properties as the nonphysical mode region. In both re-

gions, the normalized phase constant exceeded unity, whereas the 

normalized attenuation constant differed from zero. In the 

frequency region above this physically meaningless region, the 

2nd antenna mode region existed for the higher-order TM 

modes. The spectral ranges of the 1st antenna mode were 2.29, 

3.79, and 5.32 GHz for TM02, TM03, and TM04, respectively. 

The spectral ranges of the 2nd antenna mode were 4.32, 1.72, 

1.06, and 0.73 GHz for TM01, TM02, TM03, and TM04, respec-

tively. As seen from the results, the spectral width of the 1st an-

tenna mode region was enlarged, and the spectral width of the 2nd 

antenna mode narrowed as the mode order increased. An enlarged 

transition region from the 1st antenna mode region to the spectral 

gap and the 2nd antenna mode region and the guided mode re-

gion for TM02 and TM04 are presented in the insets in Fig. 2(a). 

The results obtained for the structure were consistent with the 

results obtained for the cylindrical dielectric rod with a radius of 5 

mm and a relative dielectric constant of 5 in [32, 36, 41]. 

As original research, the leaky-wave characteristics of the hy-

brid HE modes of the structure were obtained using Davidenko’s 

method and the coefficient matrix of the system of characteristic 

equations described in the previous section. The leaky-wave char-

acteristics of the hybrid HE modes are given in Fig. 3, where the 

radius of the dielectric rod was 10 mm, the relative dielectric constant 

was 4, and the azimuthal variation was 1 (m = 1). Table 4 presents 

(a)  
 

(b) 

Fig. 3. Leaky-wave characteristics of the hybrid HE modes for the 10-mm radius cylindrical dielectric rod with a relative dielectric constant 

of 4. (a) Normalized phase constant and (b) normalized attenuation constant. 
 

Table 4. Spectral ranges of the hybrid HE modes for the 10-mm radius cylindrical dielectric rod with a relative dielectric constant of 4 

Mode 
Nonphysical  

mode 

Leaky-wave region Guided mode 

cutoff Reactive mode 1st antenna mode Spectral gap 2nd antenna mode

HE11 0–1.47 1.47–5.60 NA NA 5.60–10.57 10.57 

HE12 0–1.26 1.26–13.14 NA NA 13.14–19.34 19.34

HE13 0–1.24 1.24–20.68 NA NA 20.68–28.05 28.05

HE14 0–1.23 1.23–28.19 NA NA 28.19–36.76 36.76

HE15 0–1.22 1.22–35.68 35.68–43.34 43.34–43.75 43.75–45.37 45.37

NA=not available. 
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the spectral ranges of the hybrid HE modes of the structure. 

An open cylindrical guide structure supported the presence of 

the HEM modes and the TE and TM modes because all the 

field components could coexist both inside and outside the 

boundary due to the nonconducting boundary conditions. The 

coefficient matrix of the system of characteristic equations for the 

cylindrical dielectric rod and its derivation with respect to the 

propagation constant required by Davidenko’s method are given 

in the appendix. The dispersion characteristics of the hybrid HE 

modes differed for both the TE and TM modes. To show these 

different characteristics, because the spectral gap was revealed 

after the fifth-order hybrid HE mode, the first five modes of the 

hybrid HE modes are presented in Fig. 3. The nonphysical mode 

regions existed within a narrow spectrum. In the leaky-wave re-

gion, the reactive mode region and the 2nd antenna mode region 

existed for all the HE modes, but the 1st antenna mode region 

and the spectral gap existed for the fifth-order (HE15) and upper 

modes, as seen in Fig. 3 and Table 4. The behavior of the nor-

malized phase constant determined the characteristic in the leaky-

wave region, as shown in Fig. 4, an enlarged view of the normal-

ized phase constant for the HE modes. For the higher hybrid 

modes (n ≥ 3), the normalized phase constant increased until a 

certain frequency, later decreased, and then increased again while 

the frequency was rising. Although the behavior was similar, only 

HE15 in the first five order modes exceeded unity, and the spectral 

gap occurred. Because, spectral gap occurs while the phase con-

stant higher than unity and the attenuation constant higher than 

zero. The spectral ranges of the 2nd antenna mode were 4.97, 6.2, 

7.37, 8.57, and 1.62 GHz for HE11, HE12, HE13, HE14, and 

HE15, respectively. 

As seen from the listed results above, the spectral width of the 

2nd antenna mode region was enlarged for the first four order 

modes when the mode order increased. HE15 had the narrowest 

2nd antenna mode range, but it had two antenna mode regions. 

The spectral ranges of the leaky-wave region were 9.1, 18.08, 

26.81, 35.53, and 44.15 GHz for HE11, HE12, HE13, HE14, and 

HE15, respectively. The results show that the HE modes had a 

larger leaky-wave spectrum, particularly the antenna mode re-

gions, compared to the TE and TM modes. This demonstrates 

that hybrid HE modes have a larger frequency spectrum for an-

tenna applications because the antenna mode region mostly leaks 

power into the space wave. 

V. CONCLUSION 

The leaky-wave characteristics of TE and TM modes for a cy-

lindrical dielectric rod in the literature were obtained from the 

joint application of the dispersion equation of the structure and 

Davidenko’s method. Davidenko’s method requires the derivative 

of the dispersion equation with respect to the propagation con-

stant. It can be hard to obtain these derivations, especially for 

complex expressions. In this study, which addressed a gap in the 

literature, the coefficient matrix of the system of characteristic 

equations for the structure was used instead of the dispersion rela-

tion so that the derivative expression required by Davidenko’s 

method could thereby be readily obtained. In so doing, a com-

plete set of analytical solutions was obtained without the need for 

currently employed auxiliary software programs and derivative 

processes. This approximation enables Davidenko’s method to be 

used for complex structures, such as an anisotropic medium, due 

to more complicated dispersion equations. In this study, the spec-

tral ranges of a nonphysical mode, a 1st antenna mode, a spectral 

 
Fig. 4. Enlarged view of the normalized phase constants of the hybrid HE modes in the vicinity of unity. 
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gap, a 2nd antenna mode, and guided modes were obtained for 

both the TE and TM modes of a structure with a 10-mm radius 

and a relative dielectric constant of 4. The results are compatible 

with the results in the literature, which show that TE modes have 

only one antenna mode region, while TM modes (n ≥ 2) have 

two antenna mode regions. Additionally, the 1st antenna mode 

region, the spectral gap, and the 2nd antenna mode region exist 

for higher-order TM modes (n ≥ 2). 

The cylindrical dielectric rod supports the presence of HEM 

modes and TE and TM modes because all magnetic and electric 

field components exist both inside and outside the boundary. In 

this study, the HEM modes for the cylindrical dielectric rod were 

obtained, which represents an original contribution to the litera-

ture. Using the coefficient matrix of the system of characteristic 

equations instead of the dispersion equation enabled the HEM 

modes to be obtained because the derivative expression required 

by Davidenko’s method could be readily found. The first five or-

der hybrid HE modes were obtained and presented because the 

spectral gap was revealed after the fifth-order HE mode. The first 

four HE modes had both reactive mode and 2nd antenna mode 

regions within the leaky-wave region. However, for the fifth-

order HE mode and upper modes, the reactive mode, the 1st 

antenna mode, the spectral gap, and the 2nd antenna mode exist-

ed in the leaky-wave region. Additionally, the HE modes had a 

wider leaky-wave spectrum and antenna mode regions than the 

TE and TM modes. This indicates that HE modes have a larger 

frequency spectrum for antenna applications because the antenna 

mode region leaks are significantly radiated into the space wave. 
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APPENDIX 

This section presents the coefficient matrix of the system of the 

characteristic equations for a cylindrical dielectric rod surrounded 

by free space when the medium is lossless and sourceless and the 

relative dielectric constant and the radius of the dielectric are 𝜀  

and 𝑎 , respectively. The variation of the field is defined as 𝐹 𝑟, 𝜑, 𝑧 = 𝐹 𝑟 𝑒 , where 𝜔 is the angular fre-

quency, 𝛾 is the complex propagation constant, and 𝑚 is the 

azimuthal variation. The system of the characteristic equations for 

the structure is obtained from Maxwell equations, and the 

boundary and continuity conditions between the dielectric rod 

and the free space, where the 𝑧 and 𝜑 components of the elec-

tric and magnetic fields are equal to each other. The system of the 

characteristic equations for the cylindrical dielectric rod surround-

ed by free space is obtained from the Eq. (A.1).  

In Eq. (A.1), J m and 𝐻  are the first kind Bessel Function 

and the second kind Hankel Function, respectively. The apostro-

phe above the Bessel and Hankel functions indicates the deriva-

tive of the function; 𝜀  and 𝜇  are the permittivity and permea-

bility of the free space, respectively; and j is the imaginary unit 

number. 𝑘  , 𝑘 , and 𝑘  are described as follows: 
 

    𝑘 = 𝜔 𝜀 𝜇 . (A.2) 

    𝑘 = 𝑘 𝜀 − 𝛾  (A.3) 

    𝑘 = 𝑘 − 𝛾 . (A.4) 

 

If the coefficient matrix of Eq. (A.1) is called M, its derivative 

with respect to the propagation constant is obtained by the de-

rivative of each element of the matrix with respect to the corre-

sponding variable. 
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