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I. INTRODUCTION 

The microwave dielectric properties of materials have been 

widely used for understanding the behavior and the characteris-

tics of various materials [1]. The difference in dielectric materi-

als drives various losses and reflections for microwave frequen-

cies. The measurement of the permittivity of materials has been 

demanded in many fields such as the food industry [2] and 

medicine [3]. 

Various methods have examined the complex permittivity of 

materials as in [4]. Among such methods, the rectangular cavity 

resonator is widely used to accurately detect the complex per-

mittivity of low- and medium-loss materials [5–8]. However, 

the drawback of the conventional cavity resonator method is 

that the bandwidth of the measurement is quite narrow.  

In an effort to enhance the bandwidth of the measurement, 

previous works characterized permittivity in multiple odd 

TEሺଵ,଴,௟ሻ resonant modes [8]. The cavity method requires the 

material under test (MUT) to be placed where an E-field is 

strongest to maximize the perturbation [9] for all the modes 

(even and odd). In the even modes, the MUT position should 

be adjusted for each mode, so that it is located at the maximum 

E-field. A small displacement of the MUT from the maximum 

E-field position may introduce errors in the permittivity charac-

terization. Conversely, in the odd modes, the maximum E-field 

always occurs at the center of the cavity. Therefore, the permit-

tivity is usually in the odd modes only [5–8], with the position 

of the MUT fixed at the center of the cavity. As a result, the 

sampling of permittivity is sparse.  

This study utilizes the multi-TEሺଵ,଴,௟ሻ (both even and odd) 

modes for cavity perturbation to obtain complex permittivity 
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Abstract 
 

We examine a rectangular cavity resonator method to accurately characterize the complex permittivity of dielectric materials over a wide 
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over broad bandwidth. By characterizing permittivity in the 

both even modes and odd modes, we increase the sampling 

density of the permittivity characterization within the frequency 

band. To suppress the displacement error in the even modes, 

this work proposes finding the maximum E-field spot directly 

from the 𝑆ଵଵ response. A commercial electromagnetic simula-

tion and measurement results show that the complex permittivi-

ties of all the MUTs are observed with high accuracy in the odd 

and even TEሺଵ,଴,௟ሻ modes across the broadband from 1 GHz to 

5 GHz. 

II. OVERALL SYSTEM STRUCTURE  

For the reflectivity study, an individual coaxial-to-waveguide 

transition is loaded into the cavity as illustrated in Fig. 1(a). A 
 

 
Fig. 1. (a) Schematic diagram of the structure. (b) Simulated reflec-

tion coefficient 𝑆ଵଵ in the TEሺଵ,଴,ଵሻmode depending on the 

aperture width w, where the aperture height is 2 cm. Num-

bers under the curves indicate the w of each curve in centi-

meters. w = 13 cm shows critical coupling in the TEሺଵ,଴,ଵሻ  

mode, and it is chosen as the aperture width. 
 

Fig. 2. Simulated 𝑆ଵଵ  the curves in the odd modes for different 

materials and the field distributions inside the cavity (inset). 

Resonant frequencies of the TEሺଵ,଴,ଵሻ mode at 1 GHz (a), 

TEሺଵ,଴,଻ሻ mode at 2 GHz (b), TEሺଵ,଴,ଵହሻ mode at 4 GHz (c), 

and TEሺଵ,଴,ଵଽሻ mode at 5 GHz (d).  

closed-circuited metallic waveguide is integrated into the metal-

lic cavity using an inductive aperture for the energy transaction. 

The system is designed to maximize power transfer to the cavity 

in the lowest mode by matching the impedance between the 

waveguide and the cavity with the essential aperture size in be-

tween [9] and [10]. As shown in Fig. 2(b), when the aperture 

height is fixed at 2 cm at 𝑓ሺଵ,଴,ଵሻ, the aperture width w = 13 cm 

has a minimum reflection coefficient 𝑆ଵଵ of the cavity. The 

height h and the width w of the rectangular aperture are accord-

ingly determined to be 2 cm and 13 cm, respectively. The en-

closed space inside the cavity is filled with air.  

III. CAVITY RESONATOR METHOD  

In this work, the cavity length d along the z-axis is designed 

to be longer than the other dimensions: (d = 55 cm) >> (a = 15 

cm) >> (b = 3 cm). This highly anisotropic design has a series of 

TEሺଵ,଴,௟ሻ resonant modes in the frequency band of interest. As a 

result, the resonant frequency between 1 GHz and 5 GHz has a 

simple expression given in [5]: 
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where 𝜖଴ and µ଴ are the permittivity and permeability of free 

space, respectively.  

The cavity resonator method deduces the complex permittivi-

ty of the MUT by measuring how much the resonant frequency 

is shifted. Eqs. (2), and (3) are used to determine the complex 

permittivity 𝜖௥ of materials [8]:  

 

where 𝜖௥
ᇱ  and 𝜖௥

ᇱᇱ are the real and imaginary part of complex 

permittivity, respectively, as 𝜖௥ ൌ 𝜖′௥ െ 𝑖𝜖௥
ᇱᇱ,  and 𝑉ௌ and 𝑉଴ 

are the volumes of the MUT and cavity, respectively. The 

MUT rod has a radius of 0.3 cm and height b. 𝑄଴ and 𝑄௦ are 

the 𝑄 factors of the unperturbed and perturbed cavities, re-

spectively. To maximize sensitivity, the MUT is placed where 

the E-field is strongest. In the odd modes, this location is al-

ways at the center of the cavity. The resonant frequency shifts 

with three different materials in the selected odd TEሺଵ,଴,୪ሻ  

modes are demonstrated in Fig. 2. 

To obtain a denser sampling of permittivity, the permittivity 
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in the even modes should also be characterized. However, the 

location of the maximum E-field changes mode to mode in the 

even modes as shown in the inset of Fig. 3. Theoretically, the 

E-field of the TEሺଵ,଴,ଵሻ mode has a maximum in every position 

of 𝑧ሺ௠௔௫,௜ሻ ൌ 𝑑ሺ2𝑖 െ 1ሻ/2𝑙, where 𝑖 is an integer between 1 

and 𝑙. Practically, the MUT position can be adjusted accord-

ingly by having several holes at various locations or a rail way 

along the length of the resonant cavity. Nevertheless, any small 

deviation of the MUT position from the maximum E-field po-

sition in practice directly brings about errors in permittivity 

measurements at the even modes. A method to minimize such 

errors is described as follows. 

The dielectric constant equation given by (2) is based on the 

fact that the MUT is placed where |E| is at maximum and that 

|E| distributes sinusoidally in the cavity. If the MUT is dis- 

placed from the maximum position by Δ𝑧, where |E|ൎ 

|E௠௔௫ cos
ଶగ୼ 

஛ 
|, the resonant frequency shift scales down ac- 

cording to the term | 𝑐𝑜𝑠ଶ ଶగ୼௭ 

஛ 
| as in the following equation 

[11]: 
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The above equation demonstrates that the frequency shift is  

 

 
Fig. 3. (a) In the even modes, the positions of the maximum E-

field can be found at the points where 𝑆ଵଵ  is maximally 

shifted. The shifted 𝑆ଵଵ curves in the selected even modes 

due to various MUTs are shown. The dashed red curves 

show the 𝑆ଵଵ curve with Teflon at arbitrary positions (emp-

ty dots). When Teflon is replaced at the position of the 

maximum E-field (filled dots), 𝑆ଵଵ  is maximally shi-  

fted (red curves). (b) The TEሺଵ,଴,ଶሻ  mode at 1 GHz, (c) 

TEሺଵ,଴,଼ሻ  mode at 2 GHz, and (d) TEሺଵ,଴,ଵଶሻ mode at 3 

GHz. 

at maximum when 𝛥𝑧 ൌ 0. This reduces the expression of (5) 

back to (2) as expected. In other words, the position of the max-

imum E-field can be found by finding the position where the 

frequency shift is at maximum. By re-positioning the MUT to 

the spot of the maximum frequency shift, the error due to dis-

placement is minimized. To illustrate the shifts of the resonant 

frequency for Teflon at TEሺଵ,଴,ଶሻ , TEሺଵ,଴,଼ሻ , and TEሺଵ,଴,ଵଶሻ  

are shown in Fig. 3 for the even modes. When Teflon is mis-

placed from the position of the maximum E-field, the resonant 

frequency shifts are scaled down. Once the position of the 

MUT is decided upon to yield the maximum frequency shift 

with one material, the permittivity of other materials, such as 

Plexiglas and Rogers RO3003, can be measured sequentially in 

the same position, facilitating the characterization process of 

multiple MUTs. 

IV. MEASUREMENT SETUP  

To validate the idea of the proposed cavity, the system is fab-

ricated. The proposed system walls are made with aluminum 

material that has a conductivity of σ௔ (σ௔  = 3.816 × 10଻). 

The walls are coated with a copper sheet to increase its conduc-

tivity as shown in the Fig. 4(a). The hole (rail way) is made in 

the proposed cavity starting from the center of the cavity to 

measure the complex permittivity of both modes (odd and even) 

as shown in Fig. 4(b). Fig. 4(c) illustrates the different MUTs 

used in the permittivity measurements of Plexiglas and fat 

phantom tissue. The unknown permittivity of MUTs can be 

calculated from Eqs. (2) and (3).  

The fat phantom tissue, the permittivity of which is frequency 

dependent, is made as describe in [12]. Recently, various studies 

 

(a) 

(b)                       (c) 

Fig. 4. (a) Setup of the measurements. (b) Hole size. (c) MUT 

samples. 
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have observed fat thickness in the human body using a 

RF/microwave biosensor [13]. Phantom tissue has been used in 

many studies to observe the efficacy of the RF/microwave bio-

sensor. Therefore, analyzing the permittivity of the fat phantom 

tissue, which should have a permittivity similar to that of the 

human fat, is essential. The fat phantom tissue is filled inside the 

empty tube to be inserted inside the proposed cavity to observe 

its permittivity. In the odd mode, the MUTs are placed at the 

center of the proposed cavity. However, in the even mode, the 

MUTs are inserted where the maximum shift occurs. The 

MUTs are moved through the hole of the rail as shown in Fig. 

4(b). Then, the remaining open area of the hole (rail way) is 

closed by a copper sheet to reduce the air gap and prevent any 

leakage, and to reduce the measurement errors of the complex 

permittivity. 

Prior to the measurements, an MS46122B vector network 

analyzer (VNA) is kept in calibration mode for one port. The 

entire setup is calibrated using three independent standards, 

namely open, short, and load, to reduce the effect of undesired 

losses and improves the accuracy of the measurement.  

V. RESULTS AND DISCUSSION 

In the case of simulation, from the 𝑆ଵଵ responses of the odd 

and even modes, 𝑓ሺଵ,଴,ଵሻ to 𝑓ሺଵ,଴,ଵଽሻ, as in Figs. 2 and 3 for the 

MUTs, the resonant frequencies 𝑓଴ and 𝑓௦  are extracted to 

determine the real part of the permittivity. Then 𝑄଴ and 

𝑄௦ are considered to determine the imaginary part of permit-

tivity. The 𝑄 factor is calculated from the 3-dB bandwidth. 

While 𝑄଴ ranges from (4.7697 × 10ଷ – 1.8061 × 10ସሻ, the 

𝑄௦ of Teflon, Plexiglas, and Rogers RO3003 are distributed as 

(4.7048 × 10ଷ – 1.7160 × 10ସ), (4.6778 × 10ଷ – 1.6744 × 

10ସ), and (4.6340 × 10ଷ – 1.6150 × 10ସ), respectively.  

Fig. 5 summarizes the real and imaginary parts of three per-

turbed MUTs obtained from a simulation over a series of 

TEሺଵ,଴,௟ሻ modes. The complex permittivities of Teflon, Plexiglas,  

 

 
Fig. 5. Complex permittivity of MUTs. 

 
Fig. 6. Complex permittivity |𝜖௥| error of materials. 

 

and Rogers RO3003 are originally set in the simulation as (2.1 

- 0.0021𝑖, 2.5 - 0.003𝑖, and 3.02 - 0.0048𝑖), respectively. The 

restored complex permittivities in Fig. 5 from the proposed 

method show |𝜖௥| errors less than 1% for Teflon and less than 2  

% for Plexiglas and Rogers RO3003, as shown in Fig. 6. From 

the simulation, the mean values of the complex permittivities of 

Teflon, Plexiglas, and Rogers RO3003 at 1–5 GHz are (2.1000 

± 0.0015 – 0.002𝑖 ± 0.5088), (2.4805 ± 0.0045 – 0.0030𝑖 ± 

0.6009), and (2.9888 ± 0.0064 – 0.0047𝑖 ± 0.7238), respecti- 

vely. 

In the case of measurements, we examine the complex per-

mittivity of both odd and even modes at 𝑓ሺଵ,଴,௟ሻ. To prove the 

concept, we observe the odd modes at 1, 3, and 5 GHz and the 

even modes at 2 and 4 GHz. In the first step, we study the com-

plex permittivity of Plexiglas rod, with Plexiglas being frequency 

independent. The Plexiglas rod has a height of b and a radius of 

0.3 cm. Fig. 7 illustrates the complex permittivity of the Plexi-

glas rod with a comparison with [14]. 

Next, we study the complex permittivity for the fat phantom 

tissue. Fig. 8 shows that the permittivity measurement of the fat 

phantom tissue has the same trend as in the literature over a 

wide bandwidth [12, 15]. The permittivity of the fat phantom 

tissue decreases by increasing the frequency. Therefore, the fat  

 

(a)                        (b) 

Fig. 7. The complex permittivity of Plexiglas. (a) The real part of 

the permittivity of Plexiglas. (b) The loss tangent of Plexi-

glas. 



HASSAN et al.: CONTINUOUS CHARACTERIZATION OF PERMITTIVITY OVER A WIDE BANDWIDTH USING A CAVITY RESONATOR 

43 

  
 

 

(a)                        (b) 

Fig. 8. Complex permittivity of fat phantom tissue. (a) Real part of 

the permittivity of the fat phantom tissue. (b) Loss tangent 

of the fat phantom tissue. 

 

phantom tissue can be used instead of real fat tissue for experi-

ments that require human/animal fat tissues. 

VI. CONCLUSION   

The proposed rectangular cavity resonator is presented to 

characterize the complex permittivity of low-loss materials in 

the range of 1–5 GHz for use in various applications. This 

method allows the accurate measurement of the permittivity of 

MUTs in a discrete, dense set of frequencies over a broad band-

width. 
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